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FOREWORD

Assigning tens of thousands of Army recruits per year to the jobs for which they are best
suited and in a way that maximizes aggregate Soldier performance represents a major goal for
the Army. The U.S. Army Research Institute for the Behavioral and Social Sciences (ARI) has a
long history of conducting and supporting research aimed at improving the Army’s selection and
classification process. Effective January 2002, the Army adopted a set of nine Aptitude Area
(AA) composites, to select and classify recruits into entry-level jobs, utilizing weights derived
from Soldier performance data (circa 1989). Relative to the composites they replaced, the new
composites are more defensible with their reliance upon actual performance data, and they make
use of the entire profile of aptitude information available for each recruit.

The current study aimed to independently evaluate the efficacy of these new composites
as well as alternative AA composites to meet the Army’s classification objectives. More
specifically, the present study tested the stability and relative uniqueness of several alternative
AA composite / job family structures, and their practical effects on classification efficiency. For
both scientific and practical reasons, the findings recommend the continued operational use of
the nine (standardized) AA composites and do not support the use of a larger number of
composites / job families. These findings have been briefed to the Enlisted Accessions Division,
G-1 and, in effect, represent a pull-back of recommendations based on earlier research for
increasing the number of composites/job families.

| %‘M)A%

MICHELLE SAMS
Technical Director
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EVALUATION OF ALTERNATIVE APTITUDE AREA (AA) COMPOSITES AND JOB
FAMILIES FOR ARMY CLASSIFICATION

EXECUTIVE SUMMARY

Research Requirement:

To select and classify recruits to jobs, the Army employs nine Aptitude Area (AA)
composites. Effective January 2002, the Army adopted a new set of nine AA composites based
on empirically estimated regression weights. Developed by Zeidner, J ohnson, and colleagues
(Zeidner, Johnson, Vladimirsky, & Weldon, 2000, 2001) with support from ARI, these
regression-weighted composites were part of a proposed two-tiered classification system
designed to substantially enhance the classification potential of the Army’s AA composites. In
an earlier report (Diaz, Ingerick, & Lightfoot, 2003) we independently replicated Zeidner,
Johnson, and colleagues’ method of empirically deriving AA composites, including the 9 AA
composites currently in operational use. The primary purpose of the current study was to
evaluate the efficacy of the proposed AA composites, and corresponding job families, to meet
the Army’s classification objectives. Specifically, the present study tested the stability and
differential validity of the proposed AA composites and accompanying job families, particularly
the 17 and 150 relative to the nine AAs, and their practical effects on classification efficiency, as
measured by mean predicted performance (MPP).

Method:

To assess the aforementioned issues, we conducted three major sets of analyses. The first
set was exploratory and descriptive and aimed to evaluate the stability and reliability of the 9, 17,
and 150 composites. The second set was likewise exploratory in nature and focused on assessing
the differential validity present in the 9 and 17 test composites. Specifically, these analyses
tested between-job differences in both composite validities and predicted performance scores.
The third and final set of analyses had two objectives: (1) to jointly assess the practical effects of
stability and differential validity on MPP; and (2) to determine the effects of composite
estimation method on MPP, and more operationally, on decisions based upon MPP.

Findings:

Overall, our findings supported the continued use of the standardized AA composites
based on the 9 job families proposed by Zeidner, Johnson, and colleagues, which are currently in
operational use when assigning recruits to entry-level MOS. We recommended these composites
over the 17 and 150 AA composites for two reasons. First, consistent with previous research
(Zeidner et al., 2003b), moving from 9 to 17 AA composites did not produce a practically
significant increment in either overall MPP or MPP by MOS. Second, and more importantly, the
9 AA composites based on standardized weights displayed operationally desirable properties
relative to unstandardized composites. Specifically, standardized composites are expected to
more effectively balance the optimization of aggregate Soldier performance with the need to
satisfy equally important, practical requirements. In conclusion, when coupled with the
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administrative costs and other management-related issues associated with changing existing
composites / job families and cut scores, the technical and/or practical advantages to adopting the
17 or 150 AA test composites, as currently constructed, are minimal.

Use of Findings:

The present findings, in conjunction with those of the first report (Diaz et al., 2003),
support the 9 AA composites currently in operational use.
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INTRODUCTION
Background

Aptitude Areas (AA) are critical features of the Army’s personnel management system.
For more than 50 years, AAs have served two essential functions. First, AAs structure and
meaningfully organize entry-level jobs, grouping jobs with similar aptitude requirements into
families. These families inform macro-level career field and accession management decisions,
with the aim of ensuring a steady pipeline of accessions for fulfilling both short-term and
strategic mission requirements. The second function served by AAs is that each defines a
tailored composite, which represents a differentially weighted function of aptitudes and skills
required for successful performance in a targeted set of jobs. Operationally, these composites
produce the scores used to make a wide range of personnel decisions, from setting entry-level
cut-scores to matching new recruits to jobs to counseling exiting Soldiers on civilian jobs
commensurate with their skills an.  Hilities.

First developed in 1949, AAs have since undergone periodic changes in number and
content. From the early 1970s until recently, the Army employed a system of nine AAs. Atthe
core of this system were unit-weighted composites, whose weights (0, 1) were meant to reflect
the relative importance of different cognitive aptitudes and abilities (e.g., verbal ability, coding
speed, mechanical comprehension) in determining job performance within a family of jobs (e.g.,
Clerical, Combat, Field Artille:ry).l Starting in January 2002, the Army replaced the unit-
weighted composites with a new set of nine AA composites based on empirically estimated
regression weights derived from criterion-related validities for the Armed Services Vocational
Aptitude Battery (ASVAB) (Greenston, Rumsey, Zeidner, & Johnson, 2001).> With support
from the Army Research Institute (ARI), Zeidner, Johnson, and colleagues developed the
composites as part of a proposed two-tiered classification system intended to replace the existing
AAs (see Zeidner, Johnson, Viadimirsky, & Weldon, 2000, 2001). In Zeidner, Johnson, and
colleagues’ original conceptualization of this system, the first tier was intended for classifying
recruits to one of 150 entry-level job families. The second tier, aimed at a smaller set of job
families (9 or 17), was meant for vocational counseling, recruiting, and administrative purposes.
The proposed two-tiered system was based on a multi-year program of simulation research
conducted by Zeidner, Johnson, and others. Results of their research indicated that the proposed
two-tiered classification system (and related composites) could produce substantial gains in
aggregate Soldier performance over and above that expected using the existing AAs (Johnson,
Zeidner, & Leaman, 1992; Statman, 1993; Zeidner et al., 2000, 2001).

Purpose of Report

The current report is the second of two reports documenting research assessing major
components of Zeidner and colleagues’ proposed two-tiered AA system. The first report (Diaz,

! Unit weights were based on rational linkages to job content made by subject-matter-experts (SMEs).

2 In descriptions of the Zeidner, Johnson, and colleagues’ method, these weights are frequently referred to as least
squares estimates (LSE) or LSE weights, as the weights are empirically estimated using conventional ordinary least-
squares (OLS) regression.




Ingerick, & Lightfoot, 2004) independently replicated the Zeidner, Johnson, and colleagues’
method of empirically deriving AA composites, including the nine AA composites currently in
operational use. The primary purpose of this second report is to summarize research evaluating
the efficacy of the proposed AA system to meet the Army’s classification objectives. More
specifically, the goals of this research were to:

1. Evaluate the stability and classification potential of the proposed AA composites,
particularly the 17 and 150 relative to the 9 AAs.

2. Evaluate the proposed job family structures comprising the two-tiered system (9, 17,
and 150), including the potential identification of alternative job family structures
displaying greater classification efficiency.

3. Review remaining issues related to implementing the proposed system.

In summary, the current research aimed to appraise both the process and products (i.e., Pearlman,
1980) of the proposed AA system and its potential for operationally achieving Army
classification objectives. In keeping with this goal and the recommendations of other
classification researchers (Pearlman, 1980; Sackett, 1988), we placed special emphasis on
external and practical criteria, specifically classification efficiency, when evaluating the system.

This report is organized as follows. First, we review the underlying conceptual basis and
describe the major components of Zeidner, Johnson, and colleagues’ proposed system, and its
current operational version. Second, we summarize and discuss our results from a preliminary
investigation of: (a) the stability of the proposed regression-weighted AA composites; and (b) the
differentiat validity of the proposed job family structures (9, 17, and 150). Both composite-test
stability and the differential validity of proposed job families have implications for the '
classification potential of the proposed two-tiered system. Third, we summarize our findings
from a comprehensive, empirical analysis designed to integrate these two issues. Specifically,
this joint analysis assesses the effects of composite stability and differential validity on the
classification efficiency of the proposed AA system.3 Fourth, and finally, we conclude the report
with a brief review of major findings, a discussion of remaining implementation issues, and

suggestions for future research.

3 Consistent with Zeidner, Johnson, and colleagues, classification efficiency is measured using standardized mean
predicted performance (MPP). MPP is an index of the average predicted job performance of n recruits expressed in
standard deviation units (i.e., an average z-score).




OVERVIEW OF ZEIDNER, JOHNSON, AND COLLEAGUES’ PROPOSED TWO-
TIERED CLASSIFICATION SYSTEM

The underlying conceptual basis for Zeidner, Johnson, and colleagues’ proposed
classification system comes from Differential Assignment Theory (DAT) (Zeidner & Johnson,
1994; Zeidner, Johnson, & Scholarios, 1997). Originating with research by Horst (1954, 1955)
and Brogden (1959), DAT makes two fundamental propositions. First, consistent with specific
aptitude theories of intelligence, DAT postulates that people and jobs can be differentiated on the
basis of specific aptitudes and abilities. Second, DAT emphasizes that within a multiple job
context, such as Army classification and assignment, increasing differential validity, as opposed
to incremental validity, maximizes classification efficiency. Factors that influence differential
validity, and indices of differential validity, include: (a) the number of jobs (m) to which
individuals can be assigned: (b) the average predictive (or criterion-related) validity of those jobs
(R); and (c) intercorrelations among test composites predicting performance in those jobs (r)
(Brogden, 1959; Zeidner & Johnson, 1994; Zeidner et al., 1997). Taken together, DAT posits
that when assigning individuals to multiple jobs, performance for the group (as a whole) will be
optimized by using a multidimensional test battery and a set of differentially-weighted
composites tailored to specific job(s). The practice of matching individual skills and task
requirements also has a long, informal history. The designation of the best throwers as
“pitchers” in Little League, and the best catchers as “basemen”, is one common example of this
practice.

Using DAT as a basis, and building on a multi-year program of research, Zeidner and
colleagues proposed a two-tiered classification system (see Greenston et al., 2001; Zeidner et al.,
2000, 2001). The two-tiered system consists of two major components: (a) differentially-weighted
test composites tailored to specific jobs (or job families); and (b) groupings of jobs with comparable
aptitude and performance requirements into families or Aptitude Areas (AAs). Each tier
encompasses both components. As originally conceived, the first tier was intended for classifying
recruits to one of 150 entry-level job families. The second tier, aimed at a smaller set of job families
(9 or 17), was meant for vocational counseling, recruiting, and administrative purposes.

Based on their intended purpose, classification or counseling, test composites are estimated
differently. When estimating composites, weights are derived from predictive (or criterion-related)
validities corrected for range restriction and criterion unreliability. Depending on the tier and the
intended use of scores based on the composites, the appropriate reference population (i.e., Youth or
Army Input) for making these corrections differs.* For instance, corrections to the Youth population
are appropriate when scores are used to determine the mental eligibility of high school seniors for
Army service. Conversely, corrections to the Army Input population are most appropriate when
using scores to assign recruits to entry-level jobs. In sum, the specific estimation procedure
employed when deriving the weights depends on the types of decisions for which scores based on the
composites are intended to support.

* The Youth population represents all 18 — 23 year olds in the U.S. population. The Army Input population
represents all Army recruits who pass basic service qualifications, and are therefore, eligible for assignment to entry-
level MOS.




The “operational” version of the proposed two-tiered system functions somewhat
differently than the version originally proposed by Zeidner and colleagues. The primary
difference is that under this system, both tiers, instead of just the first tier, are used in classifying
recruits to entry-level MOS. Specifically, the second tier, consisting of either 9 (or 17) AAs and
corresponding test composites, is used to determine a recruit’s eligibility for assignment to an
MOS. Consequently, these composites, and their respective weights, are referred to as
assignment (AA) composites (or AA weights). The first tier, comprised of 150 job families and
corresponding composites, is used for estimating a recruit’s predicted perfonnance.5 First tier
composites, and their respective weights, are referred to as predicted performance (PP)
composites (or PP weights). Predicted performance scores are used operationally, in conjunction
with AA scores, to inform decisions as to where to assign recruits, so as to optimize overall
aggregate Soldier performance.

Because the primary motivation for the current research is on the AA composites and
corresponding job family configurations, our analyses focused on the “operational” version of
the Zeidner and colleagues’ two-tiered classification system and its efficacy in achieving Army
classification objectives.

5 Those job families making-up the first tier are basically individual-level MOS.
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PRELIMINARY INVESTIGATION OF APTITUDE AREA (AA) COMPOSITES AND
JOB FAMILY STRUCTURE: ISSUES OF STABILITY AND DIFFERENTIAL VALIDITY

Two long-standing, albeit related, issues regarding the classification potential of
regression-weighted test composites are their stability and differential validity. By stability, we
are referring to the degree to which estimates, in this case OLS-derived regression weights,
accurately reflect an underlying population value (i.e., are generally free of sampling error). By
differential validity, we are referring to between-job family differences in: (a) the predictive (or
criterion-related) validities (R) of a test composite; and (b) the degree to which test composites,
and their predicted performance scores, are intercorrelated (r).6 In a classification context,
differential validity is maximized when predictive validities differ by family and the
intercorrelations among test composites are low. More importantly, when making operational
decisions about the classification potential of one or more test composites, these differences
should be attributable to systematic between-family differences in job content and performance
requirements and not other extenuating factors such as estimation (i.e., sampling) or
measurement error.

While the implications of sampling error on personnel selection decisions are well-known
in applied psychology (Hunter & Schmidt, 1990; Schmidt & Hunter, 1977), there is comparatively
less attention to this issue as it pertains to classification. In the context of classification, sampling
error can lead to inaccurate composite estimates, which in turn may artificially inflate (or deflate)
estimates of differential validity. Practically, this means that jobs may appear to be more or less
different than they actually are. When making operational decisions, this instability is likely to
bias estimates of a composite’s classification potential, as measures of classification effectiveness,
such as mean predicted performance (MPP) are typically based on one or more indices of
differential validity (see Brogden, 1959; Zeidner et al., 1997). That is, the higher the differential
validity across a set of jobs, the greater will be the estimated classification potential of a set of
composites specifically tailored to those jobs. However, if estimates of differential validity are
biased (positively or negatively) leading to inaccurate estimates of classification potential, then
decisions regarding the operational utility of a set of composites will be adversely affected.
Presently, there is a long-standing debate about the degree to which regression-weighted
composites tailored to specific jobs based on test batteries assessing specialized aptitudes and
abilities, such as the ASVAB, produce differences in validities that represent “true” between-job
differences and not differences due to sampling error or other artifacts (Hunter, 1983, 1985;
Hunter, Crosson, & Friedman, 1985; Schmidt, Hunter, & Larson, 1988; Schmidt, Hunter, & .
Pearlman, 1981; Zeidner & Johnson, 1994; Zeidner et al., 1997). '

As an initial step in evaluating the proposed AA system, we first investi gated these
issues. In addition to rationally examining the methods for deriving the composites and job
family structures, we conducted several exploratory analyses designed to answer the following
questions:

1. To what extent are both the individual regression weights making up the composites,
and the composites (as a whole), stable and largely free of sampling error?

¢ Differential validity is synonymous with differential prediction.
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2. Since test composites are tailored to specific job families, to what degree do
composites differ across the proposed job family configurations? That is, is there
differential validity? If not, are there alternative job family configurations that might
increase differential validity and, thereby, classification efficiency?

We will summarize our findings for each in turn.
Stability of Proposed Aptitude Area (AA) Composites

In an earlier report (see Diaz et al., 2004), we successfully replicated Zeidner, Johnson,
and colleagues’ method for estimating the proposed OLS-weighted composites. In this section,
we evaluate the stability of those weights. The section is organized as follows. First, we briefly
review Zeidner and colleagues’ method for deriving the proposed AA composites, noting its
implications for composite stability and more practically, classification efficiency. Second, we
summarize our findings from a series of exploratory analyses aimed at empirically assessing the

stability of the proposed test composites.
Overview of Zeidner and Colleagues’ Method for Deriving Regression-Weighted AA Composites

In general, Zeidner and colleagues’ method involves estimating weights from corrected
ASVAB intercorrelations and criterion-related validities using standard OLS rf:grf:ssion.7 All
weights are job- or AA-specific, meaning that weights are estimated separately for each MOS or
a family of MOS with comparable job requirements to produce composites targeted to that
specific MOS (or job family). In accordance with Differential Assignment Theory (DAT),
empirically-estimated weights are expected to differ across jobs (i.e., exhibit differential validity)
in meaningful ways that capture systematic job-to-job differences in content and performance
requirements, just as the unit-weighted composites did with dichotomously assigned wei ghts
(0,1) based on a rational analysis of job requirements. As a result, MOS-specific composites
should differentially predict Soldier performance for that MOS (or job family).

Using this approach, Zeidner and colleagues deri ved two sets of regression-weighted test
composites for use under the AA system. The first set of test composites, and their respective
weights, is intended for computing AA scores to be used in determining recruit eligibility for
assignment to an MOS. These composites constitute the second tier of Zeidner and colleagues’
proposed two-tiered classification system. The second set of test composites, and their
respective weights, is intended for computing predicted performance scores. Operationally,
predicted performance scores inform assignment decisions, in conjunction with the AA scores.
These weights form the first tier of the proposed two-tiered classification system. In addition to
informing Army classification decisions, these scores have frequently been used by Zeidner and
colleagues for basic research purposes when evaluating classification system design issues.

As discussed earlier, regression-weighted composites are potentially problematic for
classification purposes because regression-based estimates are sensitive to sampling error

7 Correlations are corrected for criterion unreliability and range restriction, as observed correlations are based on
predictor-criterion data truncated by selection and classification effects.
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(Cohen, Cohen, Aiken, & West, 2003; Pedhauzer, 1997). This means that regression-based
estimates are likely to capitalize on sample-specific variance (Hunter et al., 1985; Schmidt et al.,
1988). To address this issue, Zeidner and colleagues aggregate jobs (MOS) to ensure sample
sizes (ns) of 200 or greater when estimating composite weights. Estimates based on this design
are expected to be generally free of error (see Zeidner et al., 2000, 2001) and, therefore,
representative of the “true”, underlying population values.

While the aforementioned procedure should (and likely does) decrease estimation error,
there are several reasons for investigating this issue more thoroughly. First, many of the
sample sizes (ns) on which weights and composites are based, specifically those comprising
the first-tier, still fall below recommended levels (Maxwell, 2000). While increasing n
minimizes the standard errors associated with these weights, since error is inversely related to
n, such increases do not completely eliminate error. This is problematic because even
relatively small standard errors can distort conclusions about differential validity. For
example, consider two weights for the same predictor for two different jobs, .08 (Job A) versus
.11 (Job B). Assuming no error, the weight for Job B is 37.5% larger than that of Job A,
suggesting that the attribute underlying the predictor is more important to the performance of
Job B than Job A. Given these data, there is evidence for differential validity. Now, assume
that the standard error associated with both weights is small, about .02. This means that the
“true” weight for Job A is somewhere between .06 and .10, while the “true” weight for Job B is
between .09 and .13. Given this new information, the weights now suggest two alternative, but
differing, conclusions. The first is that, since there is overlap in the estimates, differential
validity is close to zero because the observed difference in the weights is artifactual (i.e., due
to error). The second conclusion is that the “true” weights may actually differ more than the
observed difference suggests, indicating that differential validity is greater, and potentially
more than double, that in the original example.?

This situation becomes especially problematic when observed weights are close to zero,
since once error is taken into account this suggests that the “true” population weights are
basically zero; there is no relationship between the predictor in question and job performance.
Therefore, any observed differences between these weights and those that are technically non-
zero, but otherwise represent small effects, are likely to be misleading. As evident from this
illustration, even relatively small standard errors can adversely impact estimates and conclusions
about differential validity, and more practically, classification efficiency. A cursory review of
the proposed weights and composites, particularly for the first-tier based on a 150 job family
configuration, shows that there are many cases: (a) where the observed differences in the weights
for the same ASVAB subtest across families is sufficiently small to potentially capitalize on
error; and (b) where observed weights are relatively close to zero.

The second reason for further investigating the stability of the test composites is the high
level of collinearity present among the predictors, the ASVAB subtests. Collinearity, or in this
case multicollinearity, refers to the degree to which a set of predictors correlate with each other.

8 Note the same issues apply when considering differential validity as it applies to intercorrelations among the
composites and corresponding predicted performance scores (7). Since correlations are biased due to sampling error,
the greater the sampling error, the higher the intercorrelation among predicted performance scores (and the lower the
differential validity among the composites).



When multicollinearity is high, standard errors are inflated (Cohen et al., 2003; Pedhauzer,
1997). This produces a condition known as “bouncing betas”, whereby the magnitude, and even
the direction, of the weights changes depending on which predictors are included in the
regression model. Intercorrelations among the ASVAB subtests comprising the current 7-test
battery tend to be uniformly high, ranging from .41 to .83 in the Youth population (Mitchell &
Hanser, 1984).” When working with the Army Input population, intercorrelations among the
ASVAB subtests at the MOS- and job family-level are roughly comparable in magnitude.
Therefore, the level of multicollinearity present in the ASVAB subtests is likely to contribute to
inflated standard errors when estimating composite weights. While increased » is associated
with smaller standard errors, even large # is not expected to fully negate the influence of
collinearity on regression-based estimates. '

In summary, additional research on test composite stability, and its implications for the
proposed classification system, is needed. The sample sizes () employed during estimation and
the multicollinearity present in the ASVAB could not only separately, but also jointly, contribute
to inflated standard errors. The magnitude of these errors, even those that are relatively small, is
practically important as subsequent conclusions regarding the differential validity of the test
composites could be impacted. To address these issues, we conducted a series of exploratory,
descriptive analyses to empirically assess the stability of the proposed test composites. All
analyses were based on estimates originally derived by Zeidner, Johnson, and colleagues
(Zeidner et al., 2000, 2001) and successfully replicated by Diaz et al. (2004). Estimates were
based on data contained in the Skills Qualification Test (SQT) program database. This database
contains ASVAB subtest scores and standardized Skilled Qualification Test (SQT) scores for
Army enlisted personnel covering FYs 1987-1989 (N = 257,810). These data were originally
provided by the U.S. Army Research Institute (ARI).

Results of Exploratory Analyses Describing the Stability of the Proposed Test Composites

To assess the stability of the test composites and their respective weights, we conducted
two sets of descriptive analyses. The first looked at the magnitude of the effect sizes associated
with the composites and their respective weights to identify “weak” composites, that is
composites whose weights were generally not si gnificantly different from zero. More
specifically, the purpose of these analyses was to detect test composites that, by virtue of having
effect sizes not significantly different from zero, were generally unstable and thereby could be
expected to bias estimates of differential validity. The second set of descriptive analyses, signal-
to-noise, assessed the effects of collinearity and data truncation on the composites. Comparable
to the first set of analyses, the purpose of the signal-to-noise analyses was to identify problematic
composites that could substantially bias inferences about differential validity. We will

summarize each in turn.

Identifying Weak Composites. For these analyses, we took the estimated composites and
their respective weights, specifically the first-tier weights for the 150 job families and the
second-tier weights for the 17 and 9 job families, and calculated an applicable significance test.

9 These intercorrelations are used when making range restriction corrections to ASVAB-criterion validities to
estimate the first-tier weights and composites.




For the individual weights, we computed conventional t-tests, estimating the degree to which the
observed values were significantly different from zero. For the full composites, we conducted
chi-square tests of significance estimating the degree to which the test composite (as a whole)
differed from zero.'® When conducting the tests, we considered the standard error of the weight
or the composite, respectively. That is, all tests estimated the degree to which observed values
were significantly different from zero, taking into account the applicable standard error. This
enabled us to distinguish between those weights and composites whose difference from zero was
most likely artifactual (due to error) versus those whose effect size was technically small, but
otherwise stable. From these analyses, we observed the following.

First, as expected, there was a strong linear relationship between sample size () and
composite stability. Tables 1 and 2 summarize the number (and percentage) of job families
exhibiting non-significant weights by job family configuration and ASVAB subtest.'' As
evident from Tables 1 and 2, as the number of job families increased, and thereby » decreased,
the number of non-significant weights, controlling for error, likewise increased. While the
effects of small n were minor at the 9 and 17 job family configurations, they were most
pronounced for the 150 job family configuration (see Table 2), where for 40.7% of the job
families more than half of the weights making-up their respective composite were not
significantly different from zero (p <.05). As confirmation of this, the relationship between n
and the number of nonsignificant weights among the 150 job families was strongly negative (r=-
673, p <.0001, N = 150), indicating that as n decreases, the number of non-significant weights
in a test composite increases. Therefore, while weights for the 9 and 17 job family
configurations are reasonably robust (i.e., significantly different from zero), this was not the case
for a sizeable percentage of the 150 job families.

Table 1
Number (and Percentage) of Job Families with Non-Significant Weights and Composites by
ASVAB Subtest and Job Family Configuration

Full
GS AR AS MK MC EI VE Composite
JF N(%) N(%) N(%) N(%) N(%) N(%) N(%) N%)
9  0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0)
17 5(29.4) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 1(5.9) 0(0.0) 0(0.0)

150 119(79.3) 33(22.0) 46(30.7) 31(20.7)  74(49.3)  76(50.7)  67(44.7)  0(0.0)

Note. For the 9 and 17 job family configurations, results exclude weights fixed to zero because of positive
constraint. Significance set at p < .05 (two-tailed). GS = General Science; AR = Arithmetic Reasoning;
AS = Auto & Shop Information; MK = Mathematical Knowledge; MC = Mechanical Comprehension; EI
= Electronics Information; VE = Verbal.

1 Given the n involved, these chi-square tests are equivalent to the standard overall F-test in regression.
' For significance tests results by job family and ASVAB subtest, see Appendix A.
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Table 2
Number (and Percentage) of Job Families with Non-Significant Weights within their

Respective Composite by Job Family Configuration
Number of Non-Significant Weights

0 1 2 3 4 5 6
JF N(%) N(%) N%) N(%) N(%) N(%) N(%) -
9 9(100.0)  0(0.0) 0(0.0) 0( 0.0) 0(0.0) 0(0.0) 0(0.0)
17 12(70.6)  4(23.5)  1(5.9) 0(0.0) 0(0.0) 0(0.0) 0(0.0) )
150 747 21140)  29(193)  32(21.3)  40(26.7)  16(10.7)  5(3.3)

Note. For the 9 and 17 job family configurations, results exclude weights fixed to zero because of positive
constraint. Significance set at p < .05 (two-tailed).

The second trend is that composite stability was related, over and above the effects of n,
to the particular ASVAB subtest and job family. As can be seen from Table 1, the GS subtest
was consistently associated with small effect sizes, particularly at the 150 job family
configuration, where 79.3% of the job families displayed a non-significant weight for GS.
Inspection of the actual weights confirmed this, as GS repeatedly corresponded to lower effect
sizes relative to the other subtests, even when weights were technically significant. At the 150
job family configuration, EI (50.7% non-significant), MC (49.3%), and VE (44.7%) also
emerged as ASVAB subtests that tended to be associated with non-significant effect sizes. This
suggests that: (a) the ability of some subtests to differentiate among the job families (as currently
constructed) is minor; and (b) some of the observed differentiation for a large number of families
at the 150 level is largely artifactual (due to error). As for individual job families, a visual
inspection of plots, showing the standard errors of composite weights organized by » and
ASVARB subtest for the 150 job family configuration, indicated that the magnitude of the error
varied among job families with comparable n. That is, holding » and ASVAB subtest constant,
some job families were associated with larger standard errors than others. This indicates that
sampling error differentially affected composite estimates for the different job families, as would
be expected given that the effects of sampling error are random.

In sum, we identified a number of composites, mainly at the 150 job family configuration,
that are weak. That is, controlling for error, there were a number of composites containing weights
that were not significantly different from zero. Larger standard errors tended to be a function of:
(a) low 7; (b) the ASVAB subtest corresponding to the weight; and/or (c) sampling error. These
findings are practically important for two reasons. First, they indicate that for a number of families
at the 150-level there are few ASVAB subtests to meaningfully differentiate them from other jobs.
Second, because of the number of composites that are weak, estimates of differential validity, .
particularly for those weights relatively close to zero, will either over- or under-estimate “true”
differences between job families.

Signal to Noise. We also conducted diagnostics to examine the impact of collinearity
among ASVAB tests on the quality of the estimated weights of the composites using the
approached described by Belsley (1988). This approach employs a signal-to-noise measure that
jointly accounts for two sources of “weakness” in the data, namely, collinearity and “short data.”
In our diagnostics, the “signal” corresponds to the unknown population values of the composite
LSE weights, while noise corresponds to error in estimating these weights. Collinearity and/or
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short data can lead to unstable regression weights and are directly relevant in our problem. First,
the high correlations among ASVAB scores raise concerns regarding the potentially adverse
effects of collinearity on the composite wei ghts.'? Second, restriction in range due to sample
selection is relevant to the problem of short data, which occurs when a predictor has small length
(or variance).”” ASVAB tests that are important to the job family or MOS potentially exhibit
short data problem since they are impacted most by selection-related range restriction, with
estimated weights with the “wrong” sign.

The following steps summarize the “weak data” diagnostic framework of Belsley (1991),
as it applies to the current problem. These diagnostic steps are carried out separately at the
MOS- or job family- level data. In the descriptions below, X denotes the n by seven matrix of
ASVARB test scores of individuals belonging to the MOS or job family under consideration.

1. Detecting Collinearity Problem. The collinearity diagnostic is based on the indices

no =2 k=12,
Hy

where g, is the kth smallest singular value of X (or square-root of the kth smallest
eigenvalue of X’X) and g, is the maximum singular value of X. A collinearity problem

exists if the largest index 7, is greater than 30. Note that the cut-off value 30 is the same
as that typically used when identifying important dimensions in factor analysis. The
number of linear dependencies (or dimension of the collinearity problem) is equal to the
number of values greater than 30. Two or more subtests are involved in a linear
dependency if the variances of their regression weight estimates are mostly accounted for
by the same linear dependency.

While collinearity can be expected to degrade regression weight estimates of subtests that
are involved in the relevant linear dependencies, by itself it is not harmful. If there is a
strong enough relationship between job performance criterion and ASVAB subtests, then
the regression weight estimates would still be reliable.

2. Signal-To-Noise Diagnostic. The signal-to-noise diagnostic is conceptually based on

7 = g7 var(B) B

12 A distinction is made in this approach between collinearity and correlation or statistical relationship in general.
Correlation is sufficient but not necessary for collinearity. A collinearity problem is characterized by near “linear
dependence” among two or more predictor variables. Geometrically, these predictors form an unstable base for the
regression expectation surface, which can lead to unstable weights.

13 Correction for range restriction that is traditionally applied to adjust selection sample correlations to a reference
population values does not address the short data problem. While these two issues are not exactly equivalent, they
are related. Under the same condition, when the range of a subtest is restricted, the small variance in the subtest
leads to “difficulty” in estimating the subtest weight.
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where f is the true but unknown regression weight and ,é’ is the estimate of the
regression weight with variance var([i’).” Computationally, the diagnostic is carried out

using a test statistic, based entirely on the LSE estimate ,é , that is distributed as a non-
central F (see equation (7.12) on page 212 of Belsley). Conceptually, large values of the
ratio 72 (and the test statistic) indicate that there is a sufficient signal-to-noise ratio. This
arises when the unknown regression weight /3 is large enough, even if the variance

var(,é) is inflated due to collinearity problems; large enough values also could arise even
if A is small (e.g., weak criterion-subtest relationship) if the corresponding predictor

variable is not involved in a collinearity problem with small var(b )

The combination of the collinearity diagnostic index and the signal-to-noise ratio
triangulates the weak data problem in the following way. First, there is no weak data
problem if the signal-to-noise ratio is significantly high, even in the presence of linear
dependencies (i.e., 77, values above 30). Collinearities in this situation are considered

not harmful. Second, if the signal-to-noise ratio is not significant, then this indicates one
of two weak data problems: (1) harmful collinearity, in the presence of linear
dependencies; (2) or short data, in the absence of linear dependencies. This triangulation
is summarized in the table below:

Presence of collinearity as indicated by
collinearity diagnostic

NO YES
Inadequacy of NO No weak data problem Not harmful collinearity
signal-to-noise YES Short data problem Harmful collinearity
diagnostic problem

In summary, data weakness in the job performance equation estimation potentially arises
from “correlated” predictor ASVAB battery and “data shortness” (or range restriction) due to
sample selection. If weak data is detected then there is not enough information (or power) in the
sample to conclude one way or another regarding significance or the nature of the relationship
between a subtest and job performance and a larger sample may be required.

Results of Weak Data Diagnostics. Table 3 summarizes the results of the weak data
diagnostic analysis in terms of number of ASVAB subtests involved in harmful collinearity and
short data problem by job family configuration.]5 Overall the result of this analysis is
comparable to the stability analyses above based on the usual statistical significance test on each
weight. The signal-to-noise test is similar in nature to analysis of power and does not exhibit the
tendency of the ordinary significance test to reject the null hypothesis of zero weight when the
sample size is sufficiently large.

14 Note that this is not the same as the usual test of significance as the unknown parameter value ,5 instead of ,é

appears in the numerator.
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The weak data diagnostics indicate that the overall quality of the 9 job family weights is
good. Only GS exhibited weights that were adversely affected by collinearity or short data. Our
analysis showed that GS was consistently involved in a linear dependency with VE in five out of
nine job families, and AR with MK in eight out of nine job families. However, the sample sizes
at the 9 job family configuration and ASVAB-criterion relationship were large enough to
overcome harmful effects of collinearity and produce composite weights that could be reliably
differentiated from noise.

Table 3
Number (and Percentage) of Job Families with Weights Involved in Harmful Collinearity
(HC) and Short Data (SD) Problem by ASVAB Subtest and Job Family Configuration

Typeof __ GS AR AS MK MC EI VE Total
No.JFWeakData N (%) N (%) N (%) N (%) N (%) N % N (%) N (%)
9 HC 4444 0 (0 0 (0 (@ 0 (© 0 (0 0 (0 4 (63)
SD 3(333) 0 (0) 0 (© 0 (0 0 (0 1(1L) 0 (0) 4 (63)
Total 7(77.8) 0 (0) 0 _(0) 0 (0) 0 (0) 1(1L1) 0 (0) 8(12.7)
17 HC 7(412) 0 (0 0 (© 0 (© 0 (0 0 (0) 2 (118) 9 (7.6)
SD 7(412) 0 (0) 2 (11.8) 0 (0) 2(11.8) 5(294) 0 (0) 16(134)
Total  14(824) 0  (0) 2 (11.8) 0 (0) 2(11.8) 5(294) 2 (11.8) 25 (21)

155 HC 93 (60)52 (33.5) 4 (2.6)44 (284) 1 (0.6) 3 (1.9)72 (46.5)269 (24.8)
SD  59(38.1) 33 (21.3) 88 (56.8) 31 (20) 115 (74.2) 126 (81.3) 27 (17.4) 479 (44.1)
Total 152 (98.1) 85 (54.8) 92 (59.4) 75 (48.4) 116 (74.8) 129 (83.2) 99 (63.9) 748 (68.9)

Note. GS = General Science; AR = Arithmetic Reasoning; AS = Auto & Shop Information; MK =
Mathematical Knowledge; MC = Mechanical Comprehension; EI = Electronics Information; VE = Verbal.

For the 17 job family configuration, the diagnostics again suggest good quality of weights
overall. As in the 9 job family, the GS weights were the most adversely affected by weak data
problems, with 14 out of 17 composite weights exhibiting harmful collinearity or short data.
Only two additional composites, CL1 and ST2, showed weak data problems on two ASVAB
subtests, AS and MC, which previously were not identified under the nine job family. The weak
data diagnostics is suggesting that the subtest-criterion relationship for AS and MC simply were
not strong enough in CL1 and ST2 jobs, and that under ASVAB collinearity conditions these two
subtests do not play an important role for these jobs. Composite weights on the other subtests
could be reliably differentiated from noise, even if some of them were involved in linear
dependencies (e.g., AR and MK in 14 out of 17 job families).

Diagnostics at the MOS level, which should closely approximate the 150 job family
configuration, indicate weak data problems for many MOS-job families and far more ASVAB
subtests than observed in the 9 and 17 job family configurations. GS weights continued to
exhibit weak data problems for almost all MOS at this level, which is not surprising given earlier
observations. However, all the other subtests now exhibit weak data problems for at least 48
percent of the MOS. In particular, AR and MK weights are now susceptible to the linear
dependency between these two subtests, while before there was large enough sample size to
overcome harmful effects of collinearity for these two subtests. The same can be observed for
the other ASVAB collinearities. Overall, the number of subtests that cannot reliably be
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differentiated from noise for each MOS-job family, combined with the frequency of this
occurrence across MOS-job families, indicate that true differential validity cannot be achieved at
the MOS level; that is, many of the MOS-job families will have the same ASVAB validity
pattern if we exclude subtests on each MOS-job families that are not different from noise.

In summary, the weak data diagnostics indicate that composite weights at the nine and 17
job family can reliably be differentiated from noise overall. The harmful effects of ASVAB
collinearity, while degrading the quality of some of the weights, were not strong enough to
conclude that the differential validities and related classification properties of the composite
weights are of no value. The situation is very different, however, at the 155 MOS level, where
the high frequency of MOS-job family composites with weak composite weights on several
subtests at the same time indicates that true differential validity is not achievable at the 155 MOS

or 150 job family configuration.
Dl)‘"fereritial Validity of Proposed Job Family Structure

As described earlier, differential validity is operationalized as between-job differences in
ASVAB-predictive (or criterion-related) validities (R), and as between-job differences in
intercorrelations among test composites and their respective predicted performance scores (r). For
differential validity to be meaningful, these differences need to reflect systematic differences in the
underlying performance requirements among the different jobs. Theoretically, differential validity
is expected to increase when jobs (or job families) are substantially different from each other in
terms of their actual performance requirements. As described earlier, composites are job family-
specific in that each composite seeks to maximize performance prediction for that particular MOS
or family of MOS. Therefore, how job families are constructed could significantly influence the
ability of the composites to differentiate between recruits’ expected performance across a family of
jobs. In this section, we evaluate between-family differences in the proposed composites, and their
respective weights. The section is organized as follows. First, we briefly review Zeidner and
colleagues’ method for constructing the proposed job families, noting its implications for
differential validity, and more practically, classification efficiency. Second, we summarize our
findings from a series of exploratory analyses designed to assess the degree to which the job
families, as currently constructed, can be meaningfully differentiated using the proposed

composites.
Overview of Zeidner and Colleagues’ Method for Constructing Job Families

There are a number of different methods available for clustering jobs. Zeidner and
colleagues’ method represents a hybrid approach. In brief, it involves clustering MOS into families
empirically using the previously derived test composites. Using conventional cluster analysis
procedures, MOS are allocated to families in a way that minimizes within-family differences in
composites, while maximizing between-family differences. For practical and conceptual reasons,
some modifications are then made to the placement of MOS within families based on a rational
analysis of job content. This method has produced three alternative configurations of job families.
The first consists of 150 job families, the majority of which are individual MOS. This configuration
corresponds to the first-tier in Zeidner and colleagues’ proposed classification system. The second
and third configurations consist of 17 and 9 job families respectively, each family consisting of a
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group of comparable MOS. These two configurations represent alternative versions of the second-
tier of the proposed classification system.

As with the composites, Zeidner and colleagues’ method is motivated by the proposition
that jobs differ in the kinds of cognitive aptitudes and abilities required for successful performance.
Theoretically, jobs can then be scaled accordingly. There is both empirical and conceptual support
for this proposition in applied psychology, which demonstrates that jobs can be differentiated by
cognitive ability, including specific aptitudes (DesMaris & Sackett, 1993; Gottfredson, 1986).
Equally as important, there is evidence that differences in job requirements are tied to differences
in validity. Specifically, jobs requiring higher levels of an aptitude display higher levels of
predictive (or criterion-related) validity for that aptitude (Hunter & Hunter, 1984). Therefore, there
is good reason to expect that jobs can be: (a) meaningfully differentiated by aptitude; and (b) that
said differences will correspond to differences in predictive validity. Nevertheless, additional
research on the proposed job family configurations is needed. There are several reasons for this.

The first reason is that clustering MOS into families empirically based on differences in
test composites, and their respective weights, potentially capitalizes on error associated with the
composites. As described and documented in the preceding section, there is instability in the
composites, and their respective weights, particularly at the 150 level. Because of this error, jobs
may appear more or less similar than they actually are. Using composites, then, to cluster jobs
may lead to misleading recommendations about where to best place MOS within job families, as
a means to maximize differential validity and ultimately classification efficiency.

A second reason, not unrelated to the first, is that clustering algorithms are prone to
capitalize on sample-specific variance (or error). That is, it is not uncommon for job cluster
solutions to fail to cross-validate when using a different sample and/or types of job-related data
than that from which the original solution was derived (Pearlman, 1980; Sackett, 1988; Statman,
Gribben, Harris, & Hoffman, 1994). In the first place, clustering algorithms depend heavily on
internal criteria, specifically some mathematical expression of observed differences relative to
other differences within the same data. Equally problematic, different algorithms use different
criteria. This explains why different clustering algorithms tend to produce widely divergent job
structures, even when using the same data (Lightfoot, Diaz, & Vladimirsky, 1997; Statman et al.,
1994). Consequently, results can and do vary from sample to sample owing to the idiosyncrasies
within a particular sample. In the second place, clustering techniques, such as that applied by
Zeidner and colleagues, typically lack formal statistical significance testing frameworks or “rules
of thumb” for determining the reliability and practical significance of observed differences
(Lightfoot et al., 1997). In other words, the procedures are primarily exploratory. Therefore,
unlike other conventional statistical methods (i.e., regression), there are no guides for minimizing
Type I or Type II errors as is common in conventional hypothesis testing.

In summary, while there is some basis to expect that the proposed job families will be
associated with between-family differences in the composites, additional research is needed.
Specifically, the current analyses were motivated by: (a) the sampling error present in the
composites, and their respective weights; and (b) the potential for empirically-driven clustering
techniques to capitalize on this error. As before, the magnitude of these errors, even those that
are relatively small, is important. Statistically, error could influence estimates and conclusions
regarding the differential validity of the composites. Practically, these conclusions could in turn
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impact operational decisions about which job family configuration is optimal for classification
purposes. Therefore, the effectiveness of Army classification policy is directly tied to the quality
of the evidence used to form the conclusions informing these decisions. To address these issues,
we conducted a series of exploratory, descriptive analyses aimed at empirically assessing the
differential validity of the proposed job families.

Results of Exploratory Analyses Assessing the Differential Validity of the Proposed Job Families

We conducted two sets of descriptive analyses to assess the degree job families (as
currently constructed) could be meaningfully differentiated by the proposed test composites.
The first analyses directly targeted between-family differences, controlling for sampling error, in
the composites and their respective weights within the 9 and 17 job family configurations. That
is, the first set of analyses focused on between-family differences in predictive (or criterion-
related) validities. The second set of analyses investigated between-family differences in
predicted performance scores based on the test composites for the 9 and 17 job family
configurations. That is, the second set of analyses focused on the degree to which test
composites were intercorrelated, such that they produced predicted performance scores that were
generally equivalent across job families.

Differences in Test Composites and their Individual Weights. To directly test differences

in the profile of weights making up a composite and different weights individually, we

_ conducted a nested multiple analysis of covariance (MANCOVA) followed-up by individual
analyses of covariance (ANCOVAs). For the MANCOVA, job family configuration served as
the independent variables and weights for the 7 ASVAB subtests as the dependent variables.'
To take into account estimation error, we included the square root of observed n (on which
estimates were based) as the covariate. To ensure that weights, when aggregated to job family-
level, reflected values observed at that level, estimates were weighted by acquisition ns — the
same ns used to aggregate validities to the job family-level when originally deriving weights for
the 9 and 17 job family configurations. Overall results for the MANCOVAs were meant to test
between-family differences, holding error constant, in the profile of weights (i.e., the full
equation) comprising the composite. That is, how much of the variability in a linear profile of
the weights can be explained by between-family differences? To test between-family differences
in specific weights associated with the different ASVAB subtests, we followed the MANCOVA
with individual ANCOVASs based on the same model; except for each ANCOVA there was now
only one dependent variable, that being the weights for the applicable ASVAB subtest. This
two-stage procedure is consistent with recommendations for conducting multivariate tests of
differences in multiple dependent variables (Tabachnick & Fidell, 1996).

Results for the omnibus tests in MANCOVA showed that, controlling for sampling error

G.e., Jn ), there were significant between-family differences in the profiles of the weights across

jOb families for both the 9 (Wllk’S A (56,710.768) = 389, pP< 001) and 17 (Wllk’S A (56,710.768) = : -
.101, p < .001) job family configurations. That is, for both the 9 and 17 job family

configurations, between-family differences explained a significant amount of the variability in

15 The model is nested in that the job families comprising the 17 job family configuration are nested within the 9
family configuration.
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the profile of the weights, beyond that expected by within-family differences (i.e., random error).
At the level of the ASVAB subtests, we observed the following. First, that particular subtests
were more strongly associated with between-family differences than others (see Table 4). For
example, looking across the two configurations, between-family differences accounted for the
greatest variability (see R? values) in weights for Auto & Shop Information (AS), Arithmetic
Reasoning (AR), and Verbal (VE). Second, the partial effect sizes (R%s) for the 17 job family

Table 4
Results of Individual ANCOVAs by ASVAB Subtest and Job Family Configuration

Job Family Configuration

9 17

Subtest F df D R F df p R’

GS 5.063 8,137 .001 228 950 8,137 478 .053
AR 13.076 8,137 .001 433 3.224 8,137 .002 158
AS 23.875 8,137 .001 582 4.122 8,137 .001 .194
MK 7.159 8,137 .001 295 2.530 8,137 .013 129
MC 7.202 8,137 001 296 1.763 8,137 .090 093
El 6.191 8,137 .001 266 2.584 8,137 012 131
VE 9.681 8,137 .001 361 4.297 8,137 .001 201

Note. R? values are partial R%s and reflect the unigue contributions of between-family differences associated
with a particular job family configuration to variability in the applicable composite weights. GS = General
Science; AR = Arithmetic Reasoning; AS = Auto & Shop Information; MK = Mathematical Knowledge;
MC = Mechanical Comprehension; EI = Electronics Information; VE = Verbal.

configuration were smaller (roughly 50%-+) than the corresponding values for the 9 job family
configuration, indicating most of the differentiation between jobs is attributable to the 9 job
families. At an aggregate level, this suggests that expanding the 9 job family configuration to 17
families does further differentiate among some jobs, but it is unclear if that added differentiation
is practically significant.

In summary, controlling for sampling error, there are differences in composite weights,
both as a set and individually, across job families in the 9 and 17 job family configurations.
There were two additional observations of note. First, consistent with earlier findings regarding
composite stability, certain ASVAB subtests were more strongly associated with between-family
differences than others [i.e., Auto & Shop Information (AS) versus General Science (GS)].
Second, expanding the 9 job family configuration to 17 appears to further meaningfully
differentiate among the families, but the degree to which this is practically significant (i.e., leads
to substantial increase in MPP) was unclear from the present findings.

Differences in Predicted Performance by Composite. To test between-family differences
in predicted performance scores by test composite, we computed distance statistics assessing
differences in the predicted performance scores across the range of ability. Mathematically, the
“distance” between two composites, indexed by i and j, is represented by the following formula:

var(f,-7,)= R? +R? -2r,RR,

/i A
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As the left-hand-side of the expression indicates, this involved estimating predicted
performances based on the two composites for each recruit, and taking the variance of their
difference in the recruit population. This distance statistic is a useful diagnostic tool for assessing
differential validity-related properties of the composites. Two composites that are more or less
parallel (i.e., no differential validity) would yield an intra-person composite difference that is
fairly constant in the population, as would be indicated by a variance that is close to zero. On the
other hand, if the composites are close to orthogonal, then the variance of their difference would
be large. In our analysis, we would prefer composites that are dissimilar from each in the sense .
that variances of their pairwise differences are relatively large. The aforementioned ideas also are

readily verified using the computational formula on the right-hand-side of the expression above.

In the regression context, this expression is proportional to the loss in overall R-square when two

separate regression equations from two samples with equal sizes are combined. This

interpretation is not appropriate given the unequal job family sample sizes, but will be employed

after some modifications in our second distance statistic. For the full set of pairwise distance

values for the 9 and 17 job family configurations, see Appendix C.

For the 9 job family configuration, on average, the Clerical (CL) (Mp =4.147) and
Mechanical Maintenance (MM) (Mp = 5.738) job families displayed the largest differences with
the other families (see Table 5). Similarly, the largest difference between any two families was
12.442 for CL versus MM. A comparable pattern was observed for the 17 job family
configuration. The two families exhibiting the largest differences, on average, were Clerical 1
(CL1) (Mp = 6.313) and Mechanical Maintenance 1 (MM1) (Mp = 7.656). The largest difference
between any two families was associated with CL1 versus MM1 (20.242). Overall, differences
were larger, on average, for the 17 job family configuration than the 9 job family configuration.

Table 5
Differences in Predicted Performance Scores by Job Family
Job Family Configuration

9 17

JF Mp Min Max JF Mp Min Max

CL 4.147 1.168 12.442 CL1 6.313 1.420 20.242

CO 2410 264 6.423 CL2 2.392 .529 11.222

EL 1.346 332 3.912 Col1 4.046 .848 9.740

FA 1.630 264 5.676 CcO2 1.629 .194 6.237

GM 1.827 325 5.003 EL1 1.652 204 6.669

MM 5.738 1.946 12.442 EL2 1.508 242 5.387

OF 1.453 325 4.010 EL3 2.225 218 9.674

SC 1.592 267 6.256 FA 1.906 195 7.178

ST 1.789 267 6.510 GM1 3.267 .629 9.673 -
GM2 2.095 .194 8.132
MMI1 7.656 2.751 20.242
MM2 2.212 492 7.222 -
OF 1.746 204 7.231
SC 1.638 339 8.023
ST1 1.876 .195 8.148
ST2 3.103 218 12.012
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Note. Distance values reflect variance of differences between pairs of predicted performance scores
multiplied by 100.

Table 6 (below) provides a summary comparison of differences in predicted performance
scores across the 9 and 17 job family configurations. This table highlights potential increments (or
decrements) in differential validity by shredding-out some of the 9 job families into 17 families.
When assessing the gains in differential validity by moving from the 9 to a 17 job family
configuration and/or to identify possible alternative job family configurations, we focused on two
criteria. The first criterion of interest was whether the between-family differences for the same
family at the 17 job family level were consistently larger than the corresponding between-family
differences at the 9 job family level. As evident from the table, only General Maintenance (GM),
Electronics (EL), and Skilled Technical (ST) appeared to show consistent gains (on average) in
differential validity from shredding out their respective families at the 9 family configuration into
2-3 smaller families for the 17 configuration. Results for the other families were mixed. For
example, splitting the Clerical (CL) job family into CL1 and CL2 produced a sizeable increment
(on average) in differential validity for CL1 (from Mp =4.147 to 6.313), but a relatively
considerable drop for CL2 (from Mp = 4.147 to 2.392). A similar pattern is evident with the
Combat (CO) job family.

Table 6

Comparison of Distance Statistics Across 9 and 17 Job Family Configurations

JF Mp % +/- JF Mp % +/-
Clerical Electronics

1.CL (9) 4.147 - 1.EL (9) 1.346 -
2.CL1vs.CL2 (17) 1.736 -58.14 2.EL1vs. EL2 (17) 242 -82.02
3.CL1vs. Other JFs (17)  6.618  +59.59  3.EL1vs. EL3 (17) 1459  +8.40
4. CL2 vs. Other JFs (17) 2.436 -41.26 4, EL2 vs. EL3 (17) 1.097 -18.50
Combat 5.EL1 vs. Other JFs (17)  1.767 +31.28
1.CO (9) 2410 -- 6. EL2 vs. Other JFs (17) 1.627 +20.88
2. CO1 vs. CO2 (17) 1543  -35.98 7.EL3 vs. Other JFs (17) 2360  +75.33
3. COl vs. Other JFs (17) 4.213 +74.81 Skilled Technical

4. CO2 vs. Other JFs (17) 1.635 -32.16 1.ST(9) 1.789 -
General Maintenance 2.ST1vs. ST2 (17) 2.137 +19.45
1.GM (9) 1.827 - 3.ST1 vs. ST3 (17) 1.189 -33.54
2. GM1 vs. GM2 (17) 2.086 +14.18 4. ST2 vs. ST3 (17) .685 -61.71

3. GM1 vs. Other JFs (17) 3.345 +83.09 5.ST1 vs. Other JFs (17)  1.906 +6.54
4. GM2 vs. Other JFs (17)  2.096 +14.72 6. ST2 vs. Other JFs (17)  3.345 +86.98

Mechanical Maintenance 7. ST3 vs. Other JFs (17)  1.884 +5.31
1.MM (9) 5.738 --
2. MM1 vs. MM2 (17) 3.599 -37.28

3. MM1 vs. Other JFs (17)  7.926 +38.13
4. MM2 vs. Other JFs (17)  2.119 -63.07

Note. As in Table 5, distance values reflect variance of differences between pairs of predicted
performance scores multiplied by 100. For each comparison, the applicable job family configuration is in
parentheses. % +/- reflects the percentage change (increase or decrease) in distance values going from
applicable family in 9 job family configuration to corresponding values representing 17 family
configuration. Comparisons involving one job family versus “other JFs”, excludes related job families
(i.e., CL1 vs. Other JFs, excludes CL2).
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The second criterion of interest was whether at the 17 job family level within-family
differences were comparable to corresponding between-family differences. That is, all other things
being equal, it would be preferable that differences between families, on average, were
substantially larger than differences within related families. This was not consistently the case
based on the current analyses. For example, differences between ST1, ST2, and ST3 were not
consistently larger than average between-family differences involving one of these three families
versus the other families (in the 17 job family configuration). MM1 and MM2 displayed a
comparable trend. Conversely, EL1, EL2, and EL3 did exhibit average between-family differences ' .
consistently larger than corresponding within-family differences. Overall, of the original 9 job ‘
families, only EL and GM satisfied both criteria and represented good candidates for shredding.

As a follow-up analysis to assess the practical importance of these differences, we
computed the reduction of “total R-squared” from combining pairs of job families from the 17
job family configuration. By “total R-squared,” we are referring to the overall R-squared (or total
squared composite validity) in the regression problem represented by the combination of 17
separate LSE problems corresponding to the 17 job family composites. This reduction was
computed using the following formula:

nn, |1
AR? = (R? + R -2r,R R, {—-—!—}(—]

n+n;, \n

We employed acquisition rather than observed sample sizes for the weights », and »; as the

former more appropriately reflect the relative size of the job family in the Army; » is the total
acquisition size across 17 job families. Note that the expression inside the first parentheses is just
the constant distance statistic formula. The entire expression above is a function of job family
size such that a large reduction in R? would be expected from combining close to orthogonal
composites (as in the constant difference distance statistic) that are associated with large job
families. Results are reported in Appendix C (see Table 3).

Overall, the pattern was consistent with those from the analyses above of the variance of
differences in predicted performance scores. That is, comparisons previously associated with
larger variance of differences in predicted performance scores were associated with bigger drops
in R? even after taking into account job family sizes. Likewise, those families @i.e., CL1, MM1)
that tended to show consistently larger variance in performance score differences displayed
bigger decrements in R? when combined with one of the other families. For example, as with the
previous analysis, the biggest reduction in R? across all possible combinations was associated
with CL1 and MM1 (.005819). More importantly, the loss in R? from combining families that
represented shred-outs of families from the 9 job family configuration tended to be small to .
moderate, ranging from .000043 (EL1 and EL2) to .000928 (CO1 and CO2). The average loss in
R? corresponding to these shred-outs came to .0003639, which loosely corresponds to a .0191
drop in composite validity (R), suggesting that the average loss in total R? was not substantially -

different than that expected by error.

In summary, the distance analysis indicates varying differences in predicted performance
scores between families at both the 9 and 17 job family configurations. Only a few families
within each configuration consistently exhibited relatively sizeable differences in predicted
performance with the other families. Comparing differences between the 9 and 17 job family
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configurations suggested mixed results. Shredding families from the 9 into 2 - 3 smaller families
for the 17 job family configuration produced both increments and decrements in (average)
differential validity across families. Results observed when investigating the expected reduction
in composite validity (A R?) from combining families indicate that these composite differences
relatively are not sizeable, as the average drop in composite validity (R) was practically small
when taking into account error. As a whole, these findings are consistent with previous research
showing that test composites, and corresponding predicted performance scores, tend to be highly
correlated (Greenston et al., 2001). While the present findings could be used to identify possible
alternative configurations other than the proposed 9 and 17 configurations, they suggest that the
observed differences are not likely to produce practical differences in aggregate Soldier
performance (MPP). The final joint analysis, summarized next, provided a more comprehensive
answer to that question.

Evaluating the Practical Effects of Composite Stability and Job Family Structure on
Classification Efficiency: An Integrated Analysis

The foregoing analyses demonstrated that: (a) test composites are reasonably stable,
except for the 150 job configuration; and (b) there is evidence of differential validity in the test

" composites, even when controlling for sampling error. Although they suggest implications for

classification efficiency, these analyses did not directly measure the practical effects of these
issues on classification efficiency. To assess the practical effects of these issues, we conducted a
comprehensive set of analyses that modeled random variation in test composites induced by
empirically estimating the weights. Doing this enabled us to examine its impact on both overall
MPP and differences in MPP across and within job families.

This section is organized as follows. First, we discuss the motivations for conducting this
analysis. Specifically, we review Zeidner and colleagues’ method for estimating MPP and its
implications for operational decisions regarding the proposed composites and job families.
Second, we briefly describe the method used in the current analysis and its advantages. Third,
we summarize our findings from the analysis. :

Estimating MPP: Implications for Operational Decisions Involving the Proposed Composites
and Job Families

When evaluating which features of a classification system are optimal, it is strongly
recommended (see Pearlman, 1980; Sackett, 1988) that special emphasis be placed on external
criteria, such as indices of classification efficiency. Consistent with these recommendations, indices,
specifically MPP, have been used to inform operational decisions for structuring Army classification
systems, such as which job family configuration to adopt to maximize MPP (i.e., Zeidner et al., 2000,
2001, 2003b). However, as with any statistical estimate, the quality of MPP estimates could vary
considerably depending on the estimation procedure. Therefore, the quality of these estimates is
important, as their impact on the effectiveness of these operational decisions could be substantial.
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As described earlier, Zeidner and colleagues’ have traditionally employed a double cross-
validation design for estimating MPP."” In brief, this design involves deriving the two sets of
weights (evaluation and assignment) separately using different samples of recruits (generically
referred to as Samples A and B, respectively), then applying both sets to a third series of cross- or
holdout samples (Sample C). Whereas, assignment wei ghts are used to classify the recruits, the
evaluation weights are used to compute predicted performance scores. The predicted performance
scores are then averaged across recruits within each cross-sample, and then across all cross-
samples (usually 20), to obtain an estimate of overall MPP. This overall estimate of MPP has then
been used to evaluate features of Zeidner and colleagues’ proposed classification system or
possible alternatives, such as the optimal job family configuration (see Greenston et al., 2001;
Zeidner et al., 2000, 2003b). The purpose of the double-cross validation design is to model
sample-to-sample variability (i.e., sampling error) in MPP, which when averaged across the
multiple cross-samples is expected to produce an unbiased estimate of overall MPP. While past
research has been instructive, there were aspects that could be constructively extended to more
definitively evaluate the classification potential of the proposed test composites and job family

configurations.

First, as traditionally applied, the double cross-validation design does not directly model
error attributable to the test composites, and their respective weights. Under the double cross-
validation design, the test composites are essentially treated as fixed. That is, the composite
weights are treated as the unknown (“true”) population values, which by definition are free of
~ error. In regression terminology, the double cross-validation design models the standard error
of predicted performance, but not the standard error of the composites (and their respective
weights). While the two are related, they technically are not the same. That is, while standard
errors in predicted performance are partly a function of errors in the test composites, they are
also a function of other random sources of sample-specific variance. Therefore, by excluding
error associated with the test composites, the current design likely underestimates the level of
error associated with MPP. More recent research by Zeidner and colleagues (Zeidner et al.,
2003a) confirms this by documenting that there is variability in predictive validities, and
indirectly the composite weights, when based on the evaluation and assignment samples.

A second way in which past research could be extended is that previous studies have
tended to focus on overall MPP, arguably at the expense of MPP at the job family- or MOS-
level. While overall MPP is informative, practically the MPP of the individual job families (or
MOS) is expected to be of equal, if not potentially greater, interest to Army personnel decision-
makers for the following reasons. First, some job families may be more central to the Army’s
mission than others, thus decision-makers are likely to be interested in MPP estimates for
specific job families. Second, when evaluating the proposed composites and job families,
decision-makers will likewise be interested in how MPP is distributed across the different
families, such that the high-performing recruits are not being disproportionately allocated to
certain families over others. Reports of MPP at the job family- or MOS-level indicate that there )

16 Zeidner and colleagues more recently introduced a triple cross-validation design for estimating MPP (see Zeidner
et al., 2003b). Essentially, it is the same design as described previously, except that participants comprising the
evaluation (Sample A) and assignment samples (Sample B) are at one point switched, so as to produce a back- and
cross-sample set of MPP estimates. The two sets are then averaged to obtain the final estimate of MPP. This design
is comparable, but not equivalent, to the k-fold cross-validation design proposed here, where k = 2.
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is variability in MPP across jobs, such that some jobs are associated with negative MPP values,
whereas others with positive MPP values (Zeidner et al., 2000, 2003b). Third, external criteria,
such as MPP, can be instructive when assessing job similarity for purposes of determining
differential validity. That is, if two job families are comparable in their composites, differences
in MPP can be informative for externally validating the practical significance of these
differences. Because some job family-level MPPs will be based on smaller sample sizes (n),
even when aggregated across multiple cross-samples, the standard error of MPP for these
families will be higher than that for all families (as a whole). Therefore, this error could
substantially impact conclusions about between-family differences in MPP.

In summary, while previous research has its strengths and has been informative, there are
limitations that could impact operational decisions based on these estimates. Specifically, these
limitations are: (a) the double cross-validation design typically employed in past studies does not
model error in the test composites, and their respective weights, thereby likely underestimating
error in MPP; and (b) past research tends to focus on overall MPP with less attention to MPP at
the job family- or MOS-level. To address these issues, we conducted a constructive simulation
to model the practical effects of estimation error in the composites on MPP and its implications
for optimizing classification using the proposed job families.

Method

For the current analyses, we conducted a constructive simulation with multiple
replications using actual ASVAB and performance data from the large-scale SQT database from
which the proposed composites and job family configurations were derived. The design of the
simulation closely represents an extension of Zeidner and colleagues’ double-cross validation
design, and involved the following steps.

First, similar to Zeidner and colleagues’ design, we randomly assigned individual recruits
to one of three types of samples. Specifically, we assigned a subset of the total sample
(n = 5,000) to one of 5 cross-samples of 1,000 each (Sample C), then equally partitioned the
remaining recruits (n ~ 250,000) into an assignment (Sample A) and an evaluation sample
(Sample B). For the second step, we estimated the applicable AA and PP composites using the
assignment and evaluation samples.18 Third, we optimized the classification of recruits in each
of the cross-samples based on scores computed using the previously derived AA composites and
the same allocation percentages reported in Zeidner and colleagues’ previous work (see Zeidner
et al., 2001). Fourth, after assignment, we computed predicted performance scores for each
participant in the cross-samples using the PP composites, likewise previously derived. As with
Zeidner and colleagues, to obtain mean predicted performance (MPP) we averaged PP scores
across participants within each cross-sample. Fifth, and finally, we repeated the first four steps
49 times to obtain data for 49 replications (k = 49). To ensure that the majority of the
participants in the total sample contributed data to the cross-samples (Sample C), we initially

17 Consistent with Zeidner and colleagues, AA and PP composite weights were based on ASVAB-SQT validities
corrected for criterion unreliability and range restriction. As we were interested in the contributions of classification
(and not selection) to MPP, validities were corrected to the Army Input population, which represents all recruits
qualified to serve in the Army and eligible for assignment to entry-level MOS.
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partitioned the entire data into 49 subsamples of 5,000 each.!® For each of the 49 replications,
one of the 49 subsamples served as Sample C. The first four steps are consistent with Zeidner
and colleagues’ double cross-validation design. The fifth step, replicating the double cross-
validation design k times, extends Zeidner and colleagues’ design, enabling us to: (a) directly
model random variation (error) in estimating the AA and PP composite weights; and (b) evaluate
the practical effects of this variation when making comparisons involving MPP. 0

To assess differences by job family configuration and composite weight derivation, we
employed a 3 x 2 x 2 design. That is, we repeated the above design 10 times to obtain MPP
estimates to evaluate the comparisons of interests. There was one factor reflecting job family
configuration and two factors reflecting differences in how the assignment composite weights
were estimated. The job family configuration factor had three levels (9, 17, and 150) reflecting
the alternative job family configurations for the “operational” two-tiered classification system.
As for the two composite estimation factors, one focused on the type of constraint placed when
estimating the weights and consisted of two levels: no constraint (i.e., observed OLS weights)
versus positive constraint (i.e., weights are constrained to be positive). The second estimation
factor dealt with the impact of standardizing the weights to produce scores with equal mean and
variance, and was comprised of two levels: unstandardized versus standardized. Consistent with
its “operational” implementation, the evaluation weights used in computing individual predicted

'performance scores were always derived using the 150 job family configuration and
unconstrained, OLS-regression weights. Since composite weights for the 150 job family
configuration are not constrained to be positive, only the no constraint condition was relevant
when estimating MPP for the 150 configuration. The conditions comprising the design are
summarized in Table 7 below. The SAS programs for replicating the design, with accompanying
documentation, are found in Appendix D.

Table 7 .
Summary of Conditions in 3 x 2 x 2 Design
Constraint
Standardization No Constraint Positive Constraint
Unstandardized = 9 17, and 150 JF »9and 17JF
Configurations Configurations
Standardized » 9 17, and 150 JF » 9and 17 JF
Configurations Configurations

This design offers several advantages. First, as with Zeidner and colleagues, it places
emphasis on the practical effects of composite stability and job family configuration, specifically .
classification efficiency (i.e., MPP), and not strictly internal or statistical criteria. Second, the
current design extends Zeidner and colleagues’ work by directly modeling error in the composites,
and their respective weights; this error is expected to influence estimates of MPP. By taking into -
account error in the composites, we can more accurately evaluate differences in MPP owing to

8 A 50™ subsample with n less than 5,000 was also derived, which consisted of the n recruits remaining after
?artitioning data into the first 49 subsamples. This 50" subsample was not used in our design.
® This method is also known as k-fold (double) cross-validation.
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different job family configurations and other proposed features of a classification system, so as to
more confidently inform operational choices about Army classification policy. Third, the design
extends Zeidner and colleagues’ research by considering MPP estimates at the job family-level.

Summary of Results

As discussed earlier, the current analyses were meant to assess the impact of job family
configuration and composite estimation factors on estimates of overall MPP and differences in
MPP both across and within job families, taking into account composite stability. We turnto a
summary of the major findings for each in turn. :

Overall MPP. To evaluate the effects of job family configuration and composite
estimation factors on overall MPP, we obtained estimates of overall MPP using the
aforementioned procedure. These estimates were then analyzed using a standard analysis of
variance (ANOVA) with MPP as the dependent variable, and the independent variables being the
three factors comprising our design (with abbreviations in parentheses): (a) job family
configuration (JFCONFIG); (b) no constraint vs. positive constraint (CONSTRAINT); and (c)
unstandardized vs. standardized weights (STAND). Results from this ANOVA are summarized
in Table 8. From the results, we observed the following.

First, neither the main effect nor interactions involving CONSTRAINT were statistically
significant (p > .05). Similarly, associated effect sizes (R?) were zero. Therefore, even without '
taking into account estimation error, constraining weights to be positive did not materially affect
MPP. Second, the main effects involving STAND (F(1,2450) = 7459.934, p < .0005) and job
configuration (Fz24s0) = 1867.287, p < .0005) were statistically significant. Because of the large
sample size (N), we also computed effect size estimates. Both exhibited generally large effect
sizes, with STAND (partial R° = .754, R*= 517) explaining more of the variability in MPP than
JFCONFIG (partial R* = .605, R* = .259). Therefore, both standardization of weights and job
configuration significantly contributed to differences in MPP. Third, and finally, there was a
significant interaction between STAND and JFCONFIG (F2,2450) = 212.346, p < .0005), although
the magnitude of this effect was noticeably smaller relative to its component main effects (partial
R? =148, R* = .030). Therefore, differences in MPP by job configuration were dependent on
whether the weights were standardized or not. We investigated the nature of this effect and the
above main effects more fully, including the implications of estimation error, in a series of
follow-up analyses.

We followed-up the omnibus ANOVA with individual ANOVAs designed to test for
simple effects, with an emphasis on job family configuration. These ANOVAs followed the
omnibus model described previously, éxcept there was a single independent variable (job family
configuration) and each focused on MPP estimates obtained for a specific condition. As there
were 4 conditions total (excluding job configuration), we conducted 4 ANOVAs. Results from
these analyses, including estimates of standard error of MPP, are summarized in Table 9.
Consistent with the significant main effect observed previously for standardization of the
weights, MPP estimates tended to be systematically lower when weights were standardized.
Evidence for the significant interaction between standardization and job configuration can be
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Table 8
Results of Analysis of Variance (ANOVA) of Overall MPP

Factor F df Partial R R
JF Configuration (JF CONFIG) 1867.287* 2,2450 .605 259
Constraint (CONT) 084 1,2450 .000 .000
Standardization (STAND) 7459.934* 1,2450 754 517
JF CONFIG x CONT .000 1,2450 .000 000
JF CONFIG x STAND 212.346* 2,2450 148 030
JF CONFIG x CONT x STAND .004 2,2450 .000 .000
Overall R? 831

Note. * p < .0005. Partial R’ represents percentage of variance in weights explained by factor, héving
partialed out variance attributable to the other factors. R? represents percentage of fotal variance in

weights explained by factor.

seen in that the differences in MPP by standardization increased as the number of jobs increased.
For example, looking at the 9 job family configuration, standardizing the weights produced MPP
values of roughly .08 versus .12 when weights were unstandardized. When moving to the 17 job
family configuration, the difference widened, as standardizing the weights produced MPP values
of .09, whereas unstandardized weights resulted in MPP values around .14, roughly a 25%
increase in the difference. Increasing the number of jobs almost ten-fold to 150 increased the
difference, with standardized weights producing an MPP of .12 versus .19 for unstandardized
weights — a 40% increase in the difference over the 17. In sum, the magnitude of the difference
in overall MPP between standardized and unstandardized weights varied partly as a function of
job configuration. A possible explanation, with implications for what this means operationally,

are discussed shortly.

As for job family configuration, MPP significantly differed by configuration across all
conditions. As evident from Table 10, differences in MPP among the three job configurations
were statistically significant (p < .0005). The magnitude of the corresponding effect sizes ®)
varied, ranging from low (.040) to high (.801). A closer inspection of the differences showed
that overall MPP generally increased as the number of job families increased, although the rate at
which MPP improved markedly declined with the added number of job families. For example,
when looking at the no constraint - standardized condition, MPP goes from .083875 to .089514
(a 6.72% increase) when the number of jobs are doubled (from 9 to 17), and to .119391 (a 33.4%
increase) when the number of jobs increases almost ten-fold from 17 to 150. Consistent with the
significant interaction between job configuration and standardization, these differences varied by
whether the weights were standardized or not. In contrast to the preceding example, for the no
constraint - unstandardized condition, MPP increased from .119569 to .140396 (a 17.4%
increase) when the number of jobs doubled (from 9 to 17), and to .186598 (a 32.9% increase)
when increasing the number of jobs from 17 to 150. In sum, while overall MPP differed by job
family configuration, such that MPP generally increased as the number of jobs increased, the rate
at which MPP improved steadily declined with the added number of jobs. In addition, the
magnitude of these differences and rate of improvement in MPP depended on whether weights

were standardized or not.
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Several important observations are of note. First, the magnitude of the standard errors of
MPP observed using the current design tended to be larger than those previously reported by
Zeidner and colleagues (Zeidner et al., 2000, 2003b). Although comparison values were not
readily available for all conditions, the estimates produced here were generally 25% larger than
those previously reported. These data suggest that test composite stability could meaningfully
influence operational decisions, based on MPP, given the relatively small differences in MPP
observed between many of the job family configurations and across conditions.

Second, and related to the first point, taking into account the standard error of MPP, there
was sizeable overlap in MPP across the job family configurations (see Table 10). In particular,
there was considerable overlap in overall MPP when weights were standardized and when
comparing the 9 to the 17 job family configurations. For example, looking at the no constraint -
standardized condition, there was substantial overlap in the confidence intervals for MPP for the
9, 17, and, to a lesser extent, 150 job family configurations. Practically, this confirmed that
statistically significant omnibus differences in MPP by job family configuration reported
previously were mainly due to differences between the 9 and 150 job families.

A third and final observation pertains to the finding that while overall MPP improved as
the number of jobs increased, the magnitude of these increases diminished in relation to the
number of jobs. For example, as reported above, doubling the number of jobs from 9 to 17
tended to produce a jump in overall MPP of 7% to 17%. By comparison, increasing the number
of jobs ten-fold at best increased MPP by one-third (33% total). This suggests that most of the
differentiation among jobs, given the population of Army jobs from which the composites and
job families were constructed, is attributable to the 9 and/or 17 job family configurations. These
results support earlier analyses showing greater between-job than within-job differences for the 9
and 17 job families.

In summary, when taking into account estimation error in test composites and their
respective weights, there appears to be no practical difference in overall MPP between the 9 and 17
job family configurations, and to a lesser extent, the 17 and 150 configurations. This is particularly
the case when test composites are based on standardized weights. Specifically, when weights are
standardized to produce predicted assignment (AA) scores with equal means and variances,
observed differences in MPP were generally small and within the standard error of MPP, especially
when comparing the 9 to the 17 job family configurations (.083988 versus .089706). This finding
is significant for two reasons. First, from a practical perspective, MPP estimates based on
standardized weights more closely satisfy existing operational constraints, as they produce a more
equitable distribution of recruit quality across job families. Thus, these weights mimic statistically
the distributional requirements current Army classification policy considers when classifying
recruits to entry-level MOS.

A second reason for the significance of this finding is that it suggests that specific
abilities and aptitudes contribute less to classification efficiency relative to general mental ability
(GMA), given the current population of jobs. We are able to infer this because standardizing the
weights essentially equates the composites in terms of GMA, such that what remains after
standardization reflects the unigue contributions of specific abilities and aptitudes to
classification independent of GMA. According to DAT, increasing the number of jobs should
maximize differences among jobs in their performance requirements, thereby increasing the
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classification efficiency of a multidimensional test battery and corresponding composites based
on specific aptitudes. As reported previously, larger MPP values were observed when weights
were unstandardized, and the increases in MPP as the number of jobs increased (from 9 to 17 to
150) were greater than with standardized weights. These increases in MPP are generally
attributable to higher predictive (or criterion-related) validities, which are largely a function of
GMA (Hunter, 1983; Ree & Earles, 1991; Ree, Earles, & Teachout, 1994). When these
validities were effectively equated by standardizing the weights, both the magnitude of MPP and
increases in MPP from moving to 9 to 17 to 150 jobs declined appreciably. Therefore, the
decline in MPP improvement as the number of jobs increases, particularly when the number of
jobs is increased ten-fold, indicates that a substantial portion of the pre-standardization
differentiation (i.e., differential validity) among jobs is attributable to GMA, not specific abilities
and aptitudes.

MPP by Job. To evaluate the effects of job family confi guration and estimation method
on MPP at the job-level, we computed estimates of MPP for each job using the recorded job-
level assignments and predicted performance scores from the preceding simulation. As there
was no evidence from the above analyses that constraining weights to be positive materially
affected MPP estimates, this factor was dropped from the design. We used the 150 MOS
comprising the 150 job family configuration to define the job-levels. This enabled us to
investigate how the proposed test composites would function operationally, as this is the level at
which actual classification decisions are made in the field, and not at an aggregate level, such as
the 9 or 17 job families. Therefore, we obtained estimates of MPP for 150 jobs using the AA
assignment composites based on the 9, 17, and 150 job family configurations. To assess
differences in composite estimation method, one set of MPP estimates was based on
unstandardized AA weights and the second set on standardized AA weights. To facilitate their
interpretation and the identification of major trends, results are represented visually in Figures 1
to 6 (Appendix E).2! Tables containing MPPs and standard errors by job family confi guration
and standardization can be found in Appendix F. From these figures and tables, we identified
several major trends.

First, as to be expected, and consistent with previous results (Zeidner et al., 2000, 2003b),
the level of MPP differed by job. However, the magnitude and pattern of these differences
“noticeably varied, depending on whether weights were standardized or not. Specifically, there
tended to be greater between-job differences in MPP when weights were unstandardized than
standardized, such that some jobs were associated with low, and in some cases, negative MPP

2 Each box-and-whisker plot in these figures represents the distribution of MPP for a specific job over 245 cross-

~ samples, given a particular job family configuration (9, 17, or 150). The dot inside the box represents the median of
the distribution. The width of the box represents the inter-quartile range (IQR) or middle 50% of the distribution.
The whiskers extend to 1.5 IQR from the median or to the most extreme MPP in the distribution, whichever is most

applicable. .
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values, whereas others produced strongly positive MPP values. For example, looking at Figure
1, under the 9 job family configuration, CO jobs were consistently associated with negative MPP
values, whereas EL jobs were associated with positive MPP values. Moving to the 17 job family
configuration, one observes a comparable pattern, as CO2 jobs tended to produce MPP values
close to or slightly greater than zero, whereas CO1 jobs continued to attract low performers,
resulting in negative MPP values. At the 150 job family configuration, while there was less
consistency in MPP for families as a whole (as the families have been shredded into their
constituent jobs), there was even greater between-job variability in MPP, with particular jobs
(i.e., 71D) clearly benefiting over others (i.e., 11B). These findings are consistent with research
by Zeidner and colleagues at the job family-level (Zeidner et al., 2000, 2003b).

In contrast, when looking at MPP based on standardized weights, there was substantially
less variability in MPP across jobs. That is, unlike unstandardized weights, we did not observe
jobs with relatively large positive MPP achieved at the expense of other jobs, as indicated by
comparatively lower and/or negative MPPs. For example, as evident from Figure 4, MPP values
for CO and EL jobs were generally comparable. Of particular interest given its centrality to the
Army’s mission, MPP for CO jobs was higher, on average, than MPP produced when using
unstandardized weights. As with the unstandardized weights, while differences in MPP across
jobs increased as the number of job families increased, from the 9 to the 17 to the 150 job family
configurations, the magnitude of these differences were smaller relative to the same differences
observed using the unstandardized weights.

Second, comparable to results for overall MPP, differences in job-level MPP by job
family configuration tended to be small when taking into account standard error. Therefore, it
was difficult to conclude that one configuration produced a substantially higher level of MPP
than an alternative configuration, particularly when comparing the 9 and 17 configurations.
While at the aggregate level, the magnitude of the standard error for the same job across the 9,
17, and 150 job configurations tended to be equivalent, there were sizeable overlaps in job-level
MPP by configuration. For example, Combat (CO) jobs, such as 11B, 11C, and 11H, displayed
relatively small standard errors (on average). However, when comparing MPP for these jobs
across the three job family configurations (9, 17, 150), the observed differences in MPP by
configuration were practically small, when factoring in the applicable standard errors. Similarly,
where there were sizeable differences in MPP, they were primarily between the 9 and 150
configurations and not the 9 and 17 job family configurations. '

In summary, results at the job-level were generally consistent with those observed for
overall MPP. Both the magnitude of MPP and between-job differences in MPP were, on
average, contingent on job configuration and standardization of the weights. Specifically, job-
level MPP tended to be higher when weights were unstandardized than standardized. In
addition, between-job differences in MPP were greater between the 9 and 150 job family
configurations than between the 9 and 17 configurations, particularly when taking into account
the standard error of MPP.

As before, these findings suggest that standardized weights are preferable to
unstandardized weights for drawing research-based conclusions about the efficacy of proposed
classification system features and when making operational classification decisions. For one,
standardized weights produce less variability in MPP across jobs, ensuring a more equitable
distribution of recruit quality while at the same time yielding overall Army classification
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benefits. Results based on standardized weights indicate that classification benefits could be
achieved in a manner that is consistent with Army distributional requirements. A second
advantage of standardized weights is that they produce significantly fewer jobs exhibiting
negative MPP values; that is, fewer jobs where average aggregate performance is expected to be
negative. In particular, for certain jobs that are especially critical to the Army’s mission (i.e.,
CO), using standardized weights for classification resulted in higher MPP compared to the MPP
obtained using unstandardized weights.

Taken together, these findings confirm that standardized weights are more likely to
maximize aggregate performance, while ensuring an equitable distribution of recruit quality
across jobs. By approximating Army distributional requirements, assignments based on
standardized weights should theoretically require fewer ad-hoc adjustments by Army personnel
managers. This is beneficial because such adjustments, which will likely be unsystematic, would
otherwise negate the classification efficiency of the proposed regression-weighted test
composites.

Discussion

As noted by Pearlman (1980), job classification research involves both a process and a
product. The purpose of the current report was to evaluate the process and product of the proposed
AA test composites and their efficacy in Army classification. In this case, process refers to how
the AA composites were derived, whereas product references the stability and classification
potential of the composites. This section is organized as follows. First, we summarize the major
findings from our evaluation of the test composites and we review outstanding implementation
issues. Second, we make recommendations regarding the adoption of the proposed AA
composites. Third, and finally, we offer several suggestions for future research to further improve
Army classification and selection.

Summary of Major Findings

Our evaluation focused on investigating the stability and differential validity associated
with the proposed regression-weighted AA composites, and their practical effects on
classification efficiency (as measured by MPP). In particular, we focus on differences between
the 9 AA composites and an alternative set of 17 composites, which represent different versions
of the assignment tier in the “operational” version of Zeidner and colleagues’ proposed two-
tiered classification system. Overall, we found the following:

First, regression-weighted test composites for the 9 and 17 job family configurations
demonstrated the greatest stability. Both the composites as a whole, and their respective
weights, displayed smaller standard errors and fewer problems (i.e., collinearity, “weak” data)
than those for the 150 job family configuration. Based on our findings, the stability of the test
composites comprising the 150 job family for use in assigning recruits to entry-level MOS
configuration is questionable. This is because the lower 7, on average, on which estimates are
based, is associated with higher standard errors and greater susceptibility to inflation due to
multicollinearity present among the ASVAB subtests. There is no compelling evidence that the
9 are necessarily more stable than the 17, as both are based on families of relatively large n and
the effects of multicollinearity and “weak” data are comparable across the two sets of
composites.
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Second, as currently constructed, the 9 and 17 AA composites demonstrated between-
family differences in validities, even when taking into account sampling error. Specifically, both
the 9 and 17 AA composites displayed systematic between-family differences in: (a) composite
validities (Rs), operationalized as differences in their respective weights, both individually and as a
full set; and (b) predicted performance scores (r). However, these differences varied by job family,
such that some families (i.e., Clerical and Mechanical Maintenance) within each set of composites
were more consistently and strongly differentiated from the other ] obs than others. Equally as
important, shredding-out families and composites at the 9 job family configuration to produce the
17 configuration resulted in mixed findings. Whereas some jobs displayed greater differentiation
in validities and predicted performance scores, other jobs did not. Therefore, the gains in
differential validity were not uniform. Equally as important, they were partially offset by losses in
differentiation for other jobs. Overall, moving to the 17 AA composites does not appear to
produce greater levels of differential validity than that observed with the 9 AA composites.

Third, and most importantly, differences in mean predicted performance (MPP) among
the 9, 17, and 150 AA test composites were not practically significant, especially after taking
into account estimation error in MPP. That is, both overall MPP and job-level MPP did not
substantially differ across job family configuration, particularly between the 9 and 17 AA
composites, after considering variability in MPP due to estimation error. The finding that there
is no practical difference in MPP between the 9 and 17 AA composite is consistent with recent
research (Zeidner et al., 2003b). In addition, we considered the practical effects on MPP of
several operational issues related to how test composites, and their respective weights, are
estimated. Whereas, constraining weights to be positive did not meaningfully impact MPP,
standardizing predicted performance scores to have equal means and variance did. Specifically,
standardized weights produced somewhat lower (on average) overall MPP than unstandardized
weights, but a more equitable distribution in MPP across jobs and, in some cases, higher MPP
for jobs (i.e., Combat) critical to the Army’s mission. Because it already integrates important
operational constraints, a classification system based on standardized weights will require fewer
interventions that might otherwise negate the intended benefits of regression-weighted

composites. : .

In considering outstanding implementation issues, the most prominent issue pertains to
cut scores for the 17 and 150 AA composites. We estimated cut scores for the 17 and 150 AA
composites, equating the new cut scores with cut scores for the 9 AA composites, so as to
produce comparable MPP values. Cut scores and overall selection ratio by MOS based on the 17
and 150 AA composites, with accompanying documentation on our cut score equating method,
are reported in Appendix G. As can be seen from these data, moving to the 17 or 150 AA
composites would produce changes in cut scores. While these changes are generally small, 1-3
points, even small changes could be associated with substantial costs given the number of MOS:
affected. More importantly, the selection ratios (percentage of recruits qualifying for an MOS)
likewise change. For example, at the 17 job family levels, the change in percentage qualifying
ranges from less than 1% to 3%, whereas with the 150 job family level the percentage change
ranges from less than 1% to 18%. To ensure comparable fill-rates with the new cut scores would
necessitate potentially even larger changes in cut scores. Therefore, adoption of the 17 or 150
AA composites for classification would necessitate substantive changes in cut scores to achieve
comparable levels of MPP or fill-rates.
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Recommendations

Based on the above findings, we recommend adoption of the 9 AA composites based on
standardized weights for use in assigning recruits to entry-level MOS. There are two reasons for
this. First, consistent with previous research (Zeidner et al., 2003b), moving from 9 to 17 AA
composites does not produce a practically significant increase in either overall MPP or MPP by
MOS. This is particularly true once one takes into account estimation error in MPP. Coupled
with the administrative costs and other management-related issues associated with changing
existing cut scores based on the 9 composites, the technical and/or practical advantages to
adopting the 17 AA test composites, as currently constructed, are few. The same holds for the
150 AA test composites, whose weights are considerably less stable and reliable than the 9 or 17
composites and, thereby, less technically defensible and feasible for supporting assignment
decisions.

The second advantage to adopting the 9 AA composites based on standardized weights is
that they promote a more equitable distribution of MPP across MOS than unstandardized
composites. Practically, this means that lower quality recruits are less likely to be
disproportionately assigned to selected MOS, specifically those with lower ASVAB predictive
validities, and vice versa with higher quality recruits. Standardized composites accomplish this
by statistically approximating critical operational requirements, such as MOS distributional
requirements, when assigning recruits to MOS. In doing so, standardized composites retain the
classification efficiency of regression-weighted composites, while taking into account practical
operational concerns that might otherwise reduce their benefits. If unstandardized composites
were used, Army classification managers and other decision-makers would have to make greater
adjustments to assignments based on regression-weighted composites in order to achieve
practical objectives (i.e., distributional requirements, fill-rates). Since these adjustments are
discretionary and not likely to be implemented systematically across recruits and/or MOS, they
could be expected to negate the classification potential of the 9 (standardized) composites. In
sum, standardized composites will more effectively balance the optimization of aggregate
Soldier performance with the need to satisfy equally important, practical requirements.

Suggestions for Future Research

There are several avenues for future research. First, future research should consider the
effects of basic and technical training on Soldier proficiency and its implications for Army
classification. That is, as currently computed, estimates of aggregate Soldier performance, such as
MPP, do not consider training effects, although these effects are present. That is, while test
composites, and their respective weights, are corrected to the Army Input population, the ASVAB-
SQT validities on which they are based are conditioned on those recruits who: (a) successfully
passed training (i.., lower performers have a greater probability of attriting during technical
training); and (b) experienced the performance-enhancing effects of training (i.e., as training
increases recruit performance). Therefore, the contributions of basic and technical training to
Soldier proficiency and its implications for classification, and measures of its effectiveness (i.e.,
MPP), are not readily understood. More importantly, understanding the effects of training on
Soldier proficiency could prove beneficial for operational reasons. That is, when making entry-
level assignments, considering the performance-enhancing effects of training is likely to open up a
greater number of jobs any given recruit could be assigned to, particularly those recruits whose AA
scores substantially limit the number of jobs for which he/she qualifies. If more jobs are available
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to a recruit, the differentiation (differential validity) among the jobs has a greater opportunity to
contribute to classification efficiency, since the ability of job-specific test composites to
differentiate among the jobs is maximized. This will be especially true for recruits with lower AA
scores, who traditionally have been difficult to place. In sum, methodologies that integrate the
effects of training and classification into a single personnel management framework are likely to
prove beneficial for both research and operational purposes.

Second, over the past decade, there has been increasing recognition that the nature of
work and job performance in many jobs has changed (Howard, 1995; Iigen & Pulakos, 1999;
Schmitt & Chan, 1998). In some cases, these changes have been dramatic. The increasing use
of technology, the shift to team-based or service-oriented work arrangements, and rapid
environmental and organizational changes all necessitate different types of skills and aptitudes
(i.e., adaptability, interpersonal skills, customer service orientation), or different levels of the
same aptitudes, for successful performance than did jobs a decade ago. These changes have not
only impacted jobs in the civilian sector, but military jobs as well. For example, over the past
dozen years, the technological complexity of jobs, such as Combat (CO), has grown substantially
with the advent of new technologies and weaponry. However, the current analyses are based on
a population of jobs and predictor-criterion data that are fifteen years old. As a result, the
proposed test composites, and their respective weights, are unlikely to reflect these changes. If
the population of Army jobs and magnitude of predictor-criterion relations have changed, as a
function of systematic changes in the content and performance requirements of these jobs,
classification decisions based on the proposed composites are likely to be affected.

Third, future research is needed that constructs and evaluates the classification potential of
composites that include noncognitive variables, such as personality and vocational interests. There
is a growing body of research from applied psychology showing that personality and other
noncognitive variables are predictive of performance across a wide range of occupations and are
generally uncorrelated with and add incremental validity over and above cognitive ability, and that
predictive validities differ by job content and performance requirements (Barrick & Mount, 1991;
Barrick, Mount, & Judge, 2001; Hough & Furnham, 2003; McHenry, Toquam, Hanson, &
Ashworth, 1990; Mount & Barrick, 1995; Mount, Barrick, & Stewart, 1998; Schmidt & Hunter,
1998). More specific to the Army, research from Project A demonstrated that predictor composites
reflecting different mixes of cognitive aptitudes, personality traits, interests, and background
characteristics more strongly differentiated and predicted performance, including technical
proficiency, across jobs than predictor composites based on aptitude alone (Wise, McHenry, &
Campbell, 1990). On the basis of this evidence, noncognitive variables, specifically personality
and vocational interests, could greatly extend the classification potential of cognitively-based
composites. We presently know of few studies (e.g., Wise et al., 1990) that consider the
effectiveness of composites incorporating noncognitive variables in a multiple job context.

Conclusion

In an earlier report (Diaz et al., 2004) we independently replicated Zeidner, Johnson, and
colleagues’ method of empirically deriving AA composites, including the 9 AA composites
currently in operational use. The primary purpose of the current report was to evaluate the
efficacy of the proposed AA composites, and corresponding job families, to meet the Army’s
classification objectives. Presently, there has been a long-standing debate about the degree to
which regression-weighted composites tailored to specific jobs based on test batteries assessing
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specialized aptitudes and abilities, such as the ASVAB, produce differences in validities that
represent “true” between-job differences and not differences due to sampling error or other
artifacts (Hunter, 1983, 1985; Hunter et al., 1985; Schmidt et al., 1988; Schmidt et al., 1981;
Zeidner & Johnson, 1994; Zeidner et al., 1997). To address these issues, we tested the stability
and differential validity of the proposed AA composites and accompanying job families,
particularly the 17 and 150 relative to the 9 AAs, and their practical effects on classification
efficiency, as measured by MPP.

Overall, our findings supported the continued use of standardized AA composites when
assigning recruits to entry-level MOS based on the 9 job families proposed by Zeidner and
colleagues. We recommended these composites over the 17 and 150 AA composites for two
reasons. First, consistent with recent research (Zeidner et al., 2003b), moving from 9 to 17 AA
composites did not produce practically significant increases in either overall MPP or MPP by
MOS. Second, and more importantly, the 9 AA composites based on standardized weights
displayed operationally desirable properties relative to unstandardized composites. More
specifically, standardized composites can be expected to more effectively balance the
optimization of aggregate soldier performance with the need to satisfy quality distribution
requirements. In summary, when coupled with the administrative costs and other management-
related issues associated with changing existing cut scores based on the existing composites, the
technical and/or practical advantages to adopting the 17 or 150 AA test composites, as currently
constructed, are few.
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APPENDIX A: IDENTIFYING WEAK TEST COMPOSITES BY JOB FAMILY
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Table 1

Chi-Square (¥ ?) Significance Tests and Observed

Significance Values (p) of Full Test Composites for 9

and 17 Job Families
Job Family Configuration
9 17

JF X’ p JF x° p

CL 11558.522 .0005 CL1 6818.712 .0005

CO 4799.789 .0005 CL2 6060.484 .0005

EL 8026.876 .0005 COl1 2005.642 .0005

FA 3900.326 .0005 CO2 4918.017 .0005

GM 7268.939 .0005 EL1 5036.132 .0005

MM 15148.526 .0005 EL2 3429.786 .0005

OF 6980.239 .0005 EL3 1773.143 .0005

SC 4153.739 .0005 FA 3900.326 .0005

ST 5224271 .0005 GM1 3952.679 .0005
GM2 3411.606 .0005
MM1 13237.128 .0005
MM2 2610.497 .0005
OF 6980.239 .0005
SC 2831.936 .0005
ST1 2047.810 .0005
ST2 945.654 .0005
ST3 2857.677 .0005
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Table 2

Chi-Square ( y °) Significance Tests and Observed Significance Values (p) of Full

Test Composites for 150 Job Families

2

2

2

JF X p JF X p JF X P
11B 709341 .0005  4IC 89.921 0005 67U 641.690 .0005
11C 1327.798 .0005  44B 618.032 .0005 67V 293.000 .0005
11H 1436.565 0005  44E 406202 .0005  67Y 314.778 .0005
11M 737.056 0005  45B 424318 0005  68B 47.952 0005
12B 1360.064 .0005 45D 104.433 0005 68D 147.108 .0005
12C 621414 0005  45E 112.815 .0005  68F 229.293 0005
12F 202.128 .0005 45K 270.569 .0005  68G 379.430 .0005
13B 1450.504 .0005  45L 110.801 .0005  68] 183.517 .0005
13C 330.875 .0005 45N 230.564 0005  68M 85.922 0005
13E 871916 .0005 45T 153.416 .0005 68N 171.416 .0005
13F 1249.410 0005  46Z 92.747 0005  68Z 316.973 .0005
13M 160.805 .0005  51B 612.184 0005 71D 265.462 0005
13N 608.520 .0005 51K 206.542 .0005  71G 196.133 .0005
13R 114789 0005  5IM 53404 .0005  7IL 891.946 .0005
14D 255.150 .0005  5IR 245330 0005  71IM 261.790 .0005
16E 213501 .0005 51T 101.361 .0005  72E 407.533 .0005
16P 329.620 .0005  52C 133.635 .0005  72G 374.477 0005
16R 656.949 .0005 52D 2804.757 0005  73C 347.823 .0005
16S 873.658 0005  54B 1151.399 .0005 73D 124.266 0005
19D 1731238 .0005  55B 732.155 0005  74B 297.171 .0005
19E 1598.995 .0005 55D 104.757 .0005  75B 1027.360 .0005
19K 2109316 .0005  57E 48911 .0005  75C 440.022 .0005
247 94226 .0005  62B 2584.832 .0005 75D 382.113 .0005
258 185.047 .0005  62E 613.813 0005  75E 297.767 0005
27E 149253 0005  62F 279.622 .0005  75F 84.000 .0005
29V 280.653 .0005  62J 301.906 .0005  76] 145302 .0005
31C 1298.584 .0005  63B 4663.062 .0005  76P 754.372 0005
31K 1817.933 .0005 63D 483.193 0005 76V 1469.456 0005
31L 1010.712 .0005  63E 784.828 0005 76X 232.600 .0005
3IN 171582 .0005  63G 192.546 .0005  77F 2262.809 .0005
31P 65.980 0005  63H 787.042 0005  7TW 188.913 .0005
31Q 448591 .0005  63J 439219 .0005  8IL 51.228 .0005
31R 1641.633 0005 63N 397.469 .0005  82C 435702 .0005
318 53.965 .0005  63S 853.245 .0005  88H 218.646 0005
31V 1158.409 .0005 63T 851.795 .0005  88M 1857.942 .0005
35E 306.780 .0005  63W 2809.063 .0005 88N 106.659 .0005
35H 25948 .0005  63Y 495336 .0005  91A 965.583 .0005
351 212.899 .0005 67N 490.582 .0005 91D 187.595 .0005
35N 195246 .0005  67R 88.011 .0005 9IE 129.463 .0005
36M 265.538 .0005 67T 519.506 .0005  91F 20.898 .0039
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Table 2 (cont’d)

2

JF X p
91G 76.993 .0005
91K 107.459 .0005
91M 98.880 .0005
91P 153.012 .0005
91Q 218.886 .0005
91R 177217 .0005
918 172.979 0005
91T 50.632 .0005
91Z 89.284 .0005
92A 1194.597 .0005
92G 2333.944 0005
92M 78.059 .0005
92R 137.606 .0005
92Y 521.576 .0005
93C 100.394 0005
93P 784.817 .0005
95B 952.766 .0005
95C 50307 .0005
96B 345.164 .0005
96D 258.185 .0005
96R 335.927 .0005
97B 90.395 .0005
98C 110.505 .0005
98G 87.785 .0005
98H 217.285 .0005
98Z 169.611 .0005
55G + 93F 123.553 .0005
277 + 297 265.223 .0005
25M +25Z + 97E 91.532 .0005
15E + 16] 63.173__.0005
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APPENDIX B: DIFFERENCES IN PREDICTED PERFORMANCE SCORES BY JOB
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APPENDIX C: SAS PROGRAMS FOR RUNNING K-FOLD DOUBLE CROSS-
VALIDATION DESIGN FOR ESTIMATING MPP
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/****************************************************************************

Program applying the MPP K-Fold Validation macro program ...

****'k****'A-******************************************************************/

options formchar='|-++++++' nodate nonumber;

/* **% EDIT AS NEEDED *** Input data library */

libname kfvLib "D:\NEW AA\SAS Workspace\KFVPGMDISTN\InputData";
/* *** EDIT AS NEEDED *** Qutput data library */.

libname mppsim "D:\NEW AA\SAS Workspace\KFVPGMDISTN\MmmSimData";

/* Include OPJM K-Fold Validation macros */

%let PRINT=OFF;

/* *** EDIT AS NEEDED *** Directory where programs are located */
filename KFVPGM 'D:\NEW AA\SAS Workspace\KFVPGMDISTN\Programs';
$include KFVPGM(CreateSampleABC) ;

$include KFVPGM(ComputeDescriptives);

%include KFVPGM(SteplA correction_unreliability KFV);

$include KFVPGM(SteplB correction_ range-restriction_KFV);
$include KFVPGM(Step2 JF Validities_KFV);

$include KFVPGM(Step3 Best Positive Weights_KFV);

$include KFVPGM(Step4&5_b_to_uk_values_KFV);

$include KFVPGM (ComputeCriterionScores);

$include KFVPGM (OptimalAssignmetPredictedScores):

$include KFVPGM(KFoldEvalMpp):

/* %%% EDIT AS NEEDED *** Dump log output to file ... */

$let RUNLOG="D:\NEW AA\SAS
Workspace\KFVPGMDISTN\MmmSimData\RUN_KFoldEvalMpp_02022004.TXT";
proc printto log=&RUNLOG;run;

/* *%* EDIT AS NEEDED *** PREFIX of output files */
%$let RUNPREFFNAME=YPP;

/* *** EDIT AS NEEDED *** Random seed.
,*/ .
/* NOTE: Use SAME SEED for all simulation configuration to do paired

comparisons */
%$let RUNSEED=1001;

/* *** Edit RUNx macro vars in $LET STATEMENTS to specify simulation problem
parameters */

$let RUNREPSTART=1;
%$let RUNREPEND=49;

/** JF=9 , UNEQUAL Variance **/

$let RUNJF=JF9;
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%let RUNBETACONSTRAINT=NONE; /* POSITIVE1=J2V, POSITIVE2=HumRRO, NONE=LSE
*/

%let RUNTIER=TIER1; /* TIERl=unequal variance, TIER2=equal
variance */

$let
RUNFNAME=&RUNPREFFNAME. &RUNJF. &RUNBETACONSTRAINT. &RUNTIER. &RUNREPSTART. &
RUNREPEND;

/*

proc datasets library=mppsim; delete &RUNFNAME; quit; run;

$KFoldEvalMPP (mppsim. &RUNFNAME, &RUNSEED, &RUNJF, §RUNBETACONSTRAINT, &RUNTIER, &R
UNREPSTART, &RUNREPEND) ;

*/

$let RUNJF=JF9;

%$let RUNBETACONSTRAINT=POSITIVEL; /* POSITIVE1=JZV, POSITIVE2=HumRRO,
NONE=LSE */

%let RUNTIER=TIERI1; /* TIERl=unequal variance,. TIERZ2=equal-
variance */

%let
RUNFNAME=&RUNPREFFNAME. &RUNJF._ &RUNBETACONSTRAINT. &RUNTIER. &RUNREPSTART._ &
RUNREPEND;

proc datasets library=mppsim; delete &RUNFNAME; quit; run;

$KFoldEvalMPP (mppsim. &RUNFNAME, §RUNSEED, &RUNJF, & RUNBETACONSTRAINT, &RUNTIER, &R
UNREPSTART, &RUNREPEND) ; ‘

$let RUNJF=JF9;

$let RUNBETACONSTRAINT=POSITIVEZ2; /* POSITIVE1=JZV, POSITIVE2=HumRRO,
NONE=LSE */

%$let RUNTIER=TIER]; /* TIERl=unequal variance, TIER2=equal
variance */

%let .
RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._&
RUNREPEND; :

proc datasets library=mppsim; delete &RUNFNAME; quit; run;

$KFoldEvalMPP (mppsim. &RUNFNAME, &RUNSEED, &RUNJF, §RUNBETACONSTRAINT, &RUNTIER, &R
UNREPSTART, &RUNREPEND) ;

/** JF=9 , EQUAL Variance **/

%let RUNJF=JF9;

%let RUNBETACONSTRAINT=NONE; /* POSITIVE1=JZV, POSITIVE2=HumRRO, NONE=LSE
*/

$let RUNTIER=TIER2; /* TIERl=unequal variance, TIER2=equal
variance */

%let
RUNFNAME=&RUNPREFFNAME. &RUNJF. &RUNBETACONSTRAINT. &RUNTIER._ &RUNREPSTART._é&
RUNREPEND;

/* ,

proc datasets library=mppsim; delete &RUNFNAME; quit; run;

$KFoldEvalMPP (mppsim. &RUNFNAME, &RUNSEED, &RUNJF, §RUNBETACONSTRAINT, &§RUNTIER, &R
UNREPSTART, &RUNREPEND) ;
*/

"

%let RUNJF=JF9; .
$let RUNBETACONSTRAINT=POSITIVE]; /* POSITIVE1=J2ZV, POSITIVE2=HumRRO,
NONE=LSE */
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$let RUNTIER=TIERZ; . /* TIERl=unequal variance, TIER2=equal

variance */

$let
RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._&
RUNREPEND;

proc datasets library=mppsim; delete &RUNFNAME; quit; run;
%KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R

UNREPSTART, §RUNREPEND) ;

$let RUNJF=JF9;

$let RUNBETACONSTRAINT=POSITIVEZ2; /* POSITIVE1=JZV, -POSITIVE2=HumRRO,
NONE=LSE */ o

%$let RUNTIER=TIERZ; /* TIERl=unequal variance, TIER2=equal
variance */ ‘

%let

RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._&

RUNREPEND; .
proc datasets library=mppsim; delete &RUNFNAME; quit; run;
%KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R

UNREPSTART, §RUNREPEND) ;

/** JF=17 , UNEQUAL Variance ** /

$let RUNJF=JF17;

$let RUNBETACONSTRAINT=NONE; /* POSITIVE1=JZV, POSITIVE2=HumRR6, NONE=LSE
*/

%let RUNTIER=TIER1; /* TIERl=unequal variance, TIER2=equal
variance */ :

$let

RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._&
RUNREPEND;

/*
proc datasets library=mppsim; delete &RUNFNAME; quit; run;
%KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R
UNREPSTART, §RUNREPEND) ;
*

/ .

$let RUNJF=JF17;
$let RUNBETACONSTRAINT=POSITIVEl; /* POSITIVE1=JZV, POSITIVE2=HumRRO,

NONE=LSE */ _
$let RUNTIER=TIER1; /* TIERl=unequal variance, TIER2=equal
variance */

$let .
RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._&(

RUNREPEND; ,
proc datasets library=mppsim; delete &RUNFNAME; guit; run;
%KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R'

UNREPSTART, &RUNREPEND) ;

%$let RUNJF=JF1l7; *
$let RUNBETACONSTRAINT=POSITIVEZ; /* POSITIVE1=JZV, POSITIVE2=HumRRO,

NONE=LSE */
$let RUNTIER=TIERI; /* TIERl=unequal variance, TIER2=equal

variance */




$let .
RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._&

RUNREPEND;
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proc datasets library=mppsim; delete &RUNFNAME; quit; run; ,
%KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R

UNREPSTART, &RUNREPEND) ;
/** JF=17 , EQUAL Variance **/

$let RUNJF=JF17;

%let RUNBETACONSTRAINT=NONE; /* POSITIVE1=J2ZV, POSITIVE2=HumRRO, NONE=LSE

* / .
$let RUNTIER=TIERZ; /* TIERl=unequal variance, TIER2=equal - °
variance */

$let

RUNFNAME=&RUNPREFFNAME. &RUNJF. &RUNBETACONSTRAINT. &RUNTIER. &RUNREPSTART. &

RUNREPEND;

/*

proc datasets library=mppsim; delete &RUNFNAME; quit; run;
%KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R

" UNREPSTART, &RUNREPEND) ;

*/

$let RUNJF=JF17; .
$let RUNBETACONSTRAINT=POSITIVEL; /* POSITIVE1=JZV, POSITIVEZ2=HumRRO,

NONE=LSE */
$let RUNTIER=TIERZ2; /* TIERl=unequal variance, TIER2=equal
variance */

$let
RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._&

RUNREPEND;
proc datasets library=mppsim; delete &RUNFNAME; quit; run;
%KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R

UNREPSTART, &RUNREPEND) ;

$let RUNJF=JFl17; .
$let RUNBETACONSTRAINT=POSITIVEZ; /* POSITIVE1=JZV, POSITIVE2=HumRRO,

NONE=LSE */
$let RUNTIER=TIER2; /* TIERl=unequal variance, TIER2=equal
variance */

%let
RUNFNAME=&RUNPREFFNAME._&RUNJF._&RUNBETACONSTRAINT._&RUNTIER._&RUNREPSTART._&

RUNREPEND;
proc datasets library=mppsim; delete &RUNFNAME; quit; run;
%KFoldEvalMPP(mppsim.&RUNFNAME,&RUNSEED,&RUNJF,&RUNBETACONSTRAINT,&RUNTIER,&R

UNREPSTART, &RUNREPEND) ;

/* RESET PROC PRINTO */ -
proc printto;run;
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/****************************************************************************

Program that partitions the data into samples A(PP), B(AAR), and C(Cross)

*** REQUIRED IN SIMULATION ***

****************************************************************************/

/* Initialize total number of MOS */
data _null_;
set kfvlLib.entrymosl55 nobs=numMOS;
put numMOS=numMOS;
call symput ('NUMMOS', numMOS) ;
stop;
run;

/* read MOS sample size in Army input data */
$macro ReadMOSsizeArray;
array asizeN{&NUMMOS} _temporary_;
array asizeC{&NUMMOS} _temporary_;
do i=1 to &NUMMOS;
set kfvLib.entrymosl55 (keep = mosnumid obsN obsC) ;
asizeN{mosnumid} = obsN;
asizeC{mosnumid} = obsC;
end;
drop obsC obsN;
$mend;

/* partition the data into 3 parts: sampleDataA sampleDataB sampleDataC */
$macro CreateSampleABC(IREP,REPSEED,NREPSAMPLEC); :
data SamplePartition;
$ReadMOSsizeArray;
do mosnumid=1 to &NUMMOS;
sizeC = asizeC{mosnumid};

id = 0;
do i=1 to asizeN{mosnumid};
id+1;
inC = ( (&IREP-1)*sizeC < i <= (&IREP) *sizeC });

if (*inC) then
randToSort = l+uniform{&REPSEED) ;
else
randToSort = - (l+uniform(&REPSEED));
output;
end;
end;
drop sizeC i inC;
run;
proc sort data=SamplePartition;
by mosnumid randToSort;
run;
data SamplePartition;
$ReadMOSsizeArray;
do mosnumid=1 to &NUMMOS;
sizeOverallC+asizeC{mosnumid};




end; :
retain sizeA sizeC;
do while("last);
set SamplePartition end=last;
by mosnumid;
if first.mosnumid then do;
sizeC = asizeC{mosnumid};
sizeA = round((asizeN{mosnumid}-sizeC)/2};
nA = 0;
end;
if (randToSort<0) then do; :
/* next two line cycle from: 1,2,3,4,&NREPSAMPLEC
irepc = mod(irepc, &NREPSAMPLEC) ; ,
irepc+l; ] )
samplelD = 'C'||left (put (irepc,2.));
end;
else if ( nA < sizeA) then do;
sampleID = 'A';
nA+1l;
end;
else
sampleID = 'B';
output;
end;
keep mosnumid id samplelD;
run; :
proc sort data=SamplePartition;
by mosnumid id;
run;
data sampleDataA sampleDataB
$do ISAMPLEC=1 %to &NREPSAMPLEC;
sampleDataC&ISAMPLEC
$end;

merge kfvLib.kfvArmyInput SamplePartition;
by mosnumid id;
if (sampleID='A') then
output sampleDatahd;
else if (sampleID='B') then
output sampleDataB;
$do ISAMPLEC=1 %$to &NREPSAMPLEC;
else if (sampleID="C&ISAMPLEC") then
output sampleDataC&ISAMPLEC;
%end;
run;
$mend;
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/****************************************************************************

Compute descriptives, correlations, and covariances for samples A(PP), B(AA)

*%% REQUIRED IN SIMULATION ***

******************************************************************’k******’k**/

$macro ComputeDescriptives(SAMPLEDATA,MEANDATA,CORRDATA,COVDATA,COVDATA_ALL);

proc means data=&SAMPLEDATA noprint;
var GS AR NO CS AS MK MC EI VE SQT;
by mosnumid;
output out=tmp;
run;
proc transpose data=tmp
out=&MEANDATA (keep= mosnumid _name_ mean std

rename= (_name_=names std=sd));
var GS AR NO CS AS MK MC EI VE SQT;
id _stat_;
by mosnumid;
run;

proc corr data=&SAMPLEDATA noprint
outp=&CORRDATA (where=(_type_='CORR')
rename=(_name_=names));
var GS AR NO CS AS MK MC EI VE SQT;
by mosnumid;
run;

proc corr data=&SAMPLEDATA noprint cov
outp=&COVDATA (where=(_type ='COV')
rename=(_name_=names));
var GS AR NO CS AS MK MC EI VE SQT;
by mosnumid;
run;

proc corr data=&SAMPLEDATA noprint cov
outp=&COVDATA ALL (where=(_type_='COV')
rename=(_name_=names));
var GS AR NO CS AS MK MC EI VE SQT;
run; e

$mend;




/****************************************************************************

Correcting ASVAB-SQT validity coefficients and covariances
for criterion unreliability

OUTPUT DATASETS: Ryx CorrectRelib, Cyx_CorrectRelib_MOS : *
INPUT DATASETS: Descriptive MOS, R_Samp_MOS, Info_ MOS

**+ REQUIRED IN SIMULATION ***

****************************************************************************/

$macro CorrectUnreliability(Ryx_CorrectRelib_MOS,ny_CorrectRelib_MOS,
Descriptive_MOS,R“Samp_MOS,Infq_MOS);

/* variable names for ASVAB subtests */
$let TESTNAMES=GS AR NO CS AS MK MC EI VE;

proc iml;
TestNames = {&TESTNAMES};

/* Read ASVAB-SQT correlations and numeric ID into XYcorr and MOSNumID */
use &R_Samp_ MOS; '

read all var (TestNames) where (NAMES="SQT") into XYcorr;

read all var{MOSNUMID} where (NAMES="SQT") into MOSNumID;

close &R_Samp_MOS;

/* Read SQT reliabilities into vector YYscal*/
use &Info MOS;

read all var{RelYY} into YYscal;

close &Info MOS;

NumMOS = nrow (MosNumID); /* =nrow(CorMat) */
NumTest =ncol (TestNames);

/* correcting validity coefficients for attenuation using standard formula
*/
correctedRxy = XYcorr#(1/SQRT (YYscal));

/* initialize corrected covariance matrix */
correctedCVxy = repeat (0, NumMOS, NumTest) ;

/* computing corrected covariances -- one ASVAB subtest column at a time */

use &Descriptive MOS; , N

read all var{SD} where(names="SQT") into sdY; ' : .

do iTest = 1 to NumTest:; —
xName = TestNames[iTest]; )
read all var{SD} where (NAMES=xName) into sdX;
correctedCVxy[,iTest] = correctedRxy[,iTest]#sdY#sdX;

end;

close &Descriptive MOS;

/* creating dataset of MOS corrected SQT-ASVAB correlations */
create &Ryx CorrectRelib_ MOS var {MOSNUMID &TESTNAMES};
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correctedRxy = MosNumID || correctedRxy;
append from correctedRxy;
close &Ryx CorrectRelib MOS;

/* creating dataset of MOS corrected SQT-ASVAB covariances
create &Cyx CorrectRelib_MOS var {MOSNUMID &TESTNAMES};
correctedCVxy = MosNumID || correctedCvVxy;

append from correctedCVxy;

close &Cyx_CorrectRelib_ MOS;

quit;
run;

$mend;
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/****************************************************************************

Correcting ASVAB-SQT validity coefficients and covariances for
range restriciton.

OUTPUT DATASETS: Ryx_CorrectRelibRange_MOS .
INPUT DATASETS: C_RefPop,C_Samp_MOS,ny_CorrectRelib_MOS

*%% REQUIRED IN SIMULATION ***

****************-k***********************************************************/

$macro CorrectRangeRestriction(Ryx_CorrectRelibRange_MOS,
C_RefPop,C_Samp_MOS,ny_CorrectRelib_MOS);

/* variable names for ASVAB subtests */
21et TESTNAMES=GS AR NO CS AS MK MC EI VE;

proc iml;
TestNames = {&TESTNAMES};

/* read REFERENCE POPULATION ASVAB subtests covariance */

use &C_RefPop; ,
read all var{&TESTNAMES} where( TYPE ='COV' & names?TestNames) into PopCxx;

close &C_RefPop;
SDx = sqrt(vecdiag(PopCxx));

/* open MOS SQT-ASVAB covariance corrected for unreliability */

use &Cyx_CorrectRelib MOS; ‘ \
read all var{MOSNUMID} into MosNumID;

NumMOS = nrow (MosNumID) ;

/* open MOS SQT-ASVAB sample variance-covariance -- no correction */
use &C_Samp_ MOS;

/* create output data for range-restriction corrected validities */
create &Ryx~CorrectRelibRange_MOS var {MOSNUMID &TESTNAMES}:;

/*looping through MOSs listed under MOSTextID*/
do idxMOS=1 to NumMOS;

/* read reliability corrected ASVAB-SQT covariance, uncorrected ASVAB
variance-covariance, and uncorrected SQT variance from iTH MOS */ .

setin &Cyx_CorrectRelib_MOS; .
read all var{&TESTNAMES} where (MOSNUMID=1dxMOS) into Cxc; *correctedCVxy;
setin &C_Samp_MOS; ‘ ‘
read all var{&TESTNAMES} where (names?TestNames & MOSNUMID=3idxMOS) into

Cxx; . ) ~
read all var{SQT} where (names='SQT’' & MOSNUMID=idxMOS) into Cyy:’

/* compute range-restriction corrected ASVAB-SQT covariances for iTH MOS
*/

PopCxx*inv (Cxx) *Cxc’;
Cyy+Cxc*inv (Cxx) * (PopCxc-Cxc ') ;

PopCxc
PopCcc
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/* compute range-restriction corrected ASVAB-SQT correlations for iTH
MOS*/
PopRxc = (1/SDx/*Sxvec*/)# (PopCxc)# (1/sqrt (PopCcc));

/* append iTH MOS SQT-ASVAT correlations to output data */
TmpOutput = idxMOS || PopRxc’; ‘
setout &Ryx_CorrectRelibRange_MOS;
append from TmpOutput;
end;
close &Cyx_CorrectRelib MOS;
close &C_Samp_ MOS;
close &Ryx_CorrectRelibRange MOS;

quit;
run;

gmend;
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/************************************************************‘****************

Aggregating corrected ASVAB-SQT validity coefficients by job family.

*4% REQUIRED IN SIMULATION ***

*****************Lk**********************************************************/

¥macro
JFValid(JF_VALIDITY_DATA,MOS_VALIDITY_DATA,JF_SOLUTION,JF_CONFIG_DATA); "

/* variable names for ASVAB subtests */
$let TESTNAMES=GS AR NO CS AS MK MC EI VE;

proc iml;

/* open data containing Job Family MOS configuration */
use &JF_CONFIG_DATA;
read all var{&JF_SOLUTION} into JFSolVec;

/* Total number of JF in JFSolVec vector */
NumJF = max (JFSolVec);

/* open data containing reference population MOS validities */
use &MOS_VALIDITY_DATA;

/* create output data set for aggregated JF validities */
create &JF_VALIDITY_ DATA var {&JF_SOLUTION &TESTNAMES} ;
setout &JF_VALIDITY_DATA;

do idxJF = 1 to NumJF;

/* locate MOS in iTH job family and read acquisition weights */
setin &JF_CONFIG_DATA; '
MOSJFIDX = loc(JFSolVec=idxJF):;

read point (MOSJFIDX) var{AcgN} into N_Wgt;

/* read corrected validities of MOSs in iTH job family */
setin &MOS_VALIDITY DATA;
read point (MOSJFIDX) var{&TESTNAMES} into XYvec;

/* aggregate validity coefficients across MOS weighted by N - o x/

/* - note job family index is concatenated to output validity vector */

JFCorr = idxJF || (diag(N_Wgt)*XYvec) [+,]/sum(N_Wgt);

append from JFCorr; - w
end;

close &JF_CONFIG_DATA;
close &MOS_VALIDITY_ DATA;
close &JF_VALIDITY_ DATA;

quit;
run;
$mend;
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/****************************************************************************

Computing Beta Weights by job family.
* Use macro argument CONSTRAINT to obtain different solutlons
NONE = no constraint on subtest weights

- POSITIVEl = Postive weights using Zeidner-Johnson-Vladimirsky stopping
rule
POSITIVE2 = Postive weights -- ignoring solutions with negative weights

*%% REQUIRED IN SIMULATION ***

***********************1\—****************************************************/

$macro BetaWeights(BETADATA,COVDATA,VALIDITYDATA,JFSOLUTION,CONSTRAINT);

/* variable names for ASVAB subtests, excluding NO and CS */
$let TESTNAMES=GS AR AS MK MC EI VE;

¢let CORRDATA=TMPCORRDATA;

proc iml;
TestNames = {&TESTNAMES SQT};
NTests = ncol (TestNames);
_TYPE ={"MEAN","STD","N"}//j (NTests, 1, "CORR");
NAME —3(3 1,"")//t (TestNames);

call symput ('MNTESTS',char (NTests));

/* Used later for CONSTRAINT=POSITIVE */
call symput ('MNTESTS_ ASVAB', char (NTests-1));

|

| do i=1 to NTests;

| if(i<10) then

- MTESTNAME = concat ('MTESTNAME',char(i,1,0));
| else ;
| MTESTNAME = concat ('MTESTNAME',char(i,2,0));
; call symput (MTESTNAME, TestNames[i]);

} end;

use &COVDATA;

read all var{&TESTNAMES} where ((Names?TestNames) & {(Names"?"SQT")) into
RXX;

close &COVDATA;

SXX _INV = sqgrt(diag(1l/RXX));
. RXX = SXX INV*RXX*SXX INV;

XMEAN
XSTD

j(1,NTests,0);
j(1,NTests,1);

/* NOT actual sample sizes, but does not matter for estimation */
XN = j(1,NTests, 10000);

/* Read Validity Data Matrix -- Note that MOS/JF<->Row */
use &VALIDITYDATA;
read all var{&TESTNAMES} into RXY_ALL;
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read all var{&JFSOLUTION} into JFNO_ALL;
close &VALIDITYDATA;

/* For each job family, read validities and create correlation matrix */
create &CORRDATA (Type=corr) var ({ &JFSOLUTION TYPE _NAME_}l[TestNames);
do iJF = 1 to nrow(JFNO_ALL);

IdxJF = JFNO ALL[iJF];
&JFSOLUTION = j(nrow(_ TYPE_),1,IdxJF);

RXY = RXY ALL[iJF,};
XCORR = (RXX//RXY) || (t(RXY)//1);
XDATA = XMEAN//XSTD//XN//XCORR;

$do i=1 %to &&MNTESTS;
&S&MTESTNAME&L = XDATA[,&i];
$end;

append;
end; /* ENDOF: do iJF =1 to nrow (JFNO_ALL) */
close &CORRDATA;

quit;
run;

2if &CONSTRAINT=NONE %$then %do;
%$let MODELOPTION=NOINT;
%$let KEEPOTHER=;
$end;
$else %do; ,
%let MODELOPTION=NOINT SELECTION=RSQUARE Bj;
$let KEEPOTHER= RSQ _P_;
$end;

proc reg data=&CORRDATA T
outest=&BETADATA (keep=&JFSOLUTION &TESTNAMES &KEEPOTHER)
NOPRINT; '
model SQT = &TESTNAMES / &MODELOPTION;
by &JFSOLUTION;
quit;
run;

/******************************************************************

7eidner-Johnson-Vliadimirsky Non-negative Beta Weights APproach
******************************************************************/ ’
$if &CONSTRAINT=POSITIVEl %then %do;

proc sort data=&BETADATA;

by &JFSOLUTION descending _P_ descending _RSQ_;

run;
/* Oragnize all possible solutions using two data sets: - */
/* TmpBetaPositive: solutions with non-negative weights ‘ */

/* TmpBetaMax: solutions with maximum R for each JF & no. subtests pair */
data TmpBetaPositive : :
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TmpBetaMax
(keep=&JFSOLUTION RSQ P );
array Beta {&MNTESTS_ASVAB} &TESTNAMES;
set &BETADATA;
by &JFSOLUTION descending _P_ descending _RSQ ;
NegativeWgtFlag = 0; .
do i=1 to &MNTESTS_ ASVAB;
if (Beta{i}=.) then Beta{i} = 0;
NegativeWgtFlag = NegativeWgtFlag or (Beta{i}<O0);
end;
/* output all solutions without negative weights */
if (“NegativeWgtFlag) then
output TmpBetaPositive;
/* output subset with maximum R overall for given number of subtests */
if (First. P_ and "First.&JFSOLUTION) then do;

. P = _P +1;
output TmpBetaMax,
end;

run;

/* output positive weighted solutions with R2 >= max R2 in the next level
*/
data TmpCompare;
keep &JFSOLUTION &TESTNAMES _RSQ_ ;
merge TmpBetaPositive TmpBetaMax (rename=(_RSQ_: =Rmax) );
by &JFSOLUTION descending _P_;
if (_RSQ >= Rmax) then output;
run;

/* output only weights with maximum number of subsets for job family */
data &BETADATA;
set TmpCompare;
by &JFSOLUTION descendlng _RSQ ;
if First.&JFSOLUTION then output;
run;
%$end;

/******************************************************************

HUumRRO Simple Non-negative Beta Weights Approach:

- Entirely ignore solutions with negative weights.
*********'k********************************************************/
2if &CONSTRAINT=POSITIVE2 %$then %do;

/* keep only solutions with all positive weights */
data TmpBetaPositive;
array Beta {&MNTESTS_ ASVAB} &TESTNAMES;
set &BETADATA;
do i=1 to &MNTESTS_ASVAB;
if (Beta{i}=.) then Beta{i} = O;
else if (Beta{i}<0) then delete;
end;
run;

proc sort data=TmpBetaPositive;

by &JFSOLUTION descending _RSQ ;
run;
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/* output all positive weights solution with maximum R2 */
data &BETADATA;
keep &JFSOLUTION &TESTNAMES _RSQ ;
set TmpBetaPositive;
by &JFSOLUTION descending _RSQ_;
if First.&JFSOLUTION then output;
run;
$end;

$mend;
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/****************************************************************************

Computing Beta Weights by job family.

*%% REQUIRED IN SIMULATION ***

****************************************************************************/

$macro UKWeights (UKDATA, COVDATA, POPDATA, BETADATA, JENUM, TYPE) ;

/* variable names for ASVAB subtests, excluding NO and CS */
%let TESTNAMES=GS AR AS MK MC EI VE;

proc iml;
Subtest = {&TESTNAMES};

/* predictor correlation matrix for Army Input Population*/
use &COVDATA;

read all var{&TESTNAMES} where (names?Subtest) into CovMat;
close &COVDATA;

use &POPDATA; )
read all var{SD} where(test?Subtest) into SDvec;
$if &TYPE=TIER1 %$then %do;
read all var{MEAN} where (test?Subtest) into Means;
%end;
close &POPDATA;

SDProd = 1/ (SDvec#SDvec);
= CovMat#SDProd";

/*reading in all JFs into JFNO_ALL*/
use &BETADATA;

read all var{&JFNUM} into JFNO_ALL;
NumJF = nrow (JFNO_ALL) ;

/*creating SAS dataset containing u weights and k values for all JFs */
create &UKDATA var{JFNO &TESTNAMES k};

do idxJF=1 to NumJF;
/*converting beta weights to b-weights for MOS-level*/

setin &BETADATA;
read all var{&TESTNAMES} where (&JFNUM=idxJF) into ObsBeta;

bweights = ObsBeta# (1/SDvec’);

/*transform b-weights to u and k values for Tier2 */
%if &TYPE=TIER2 %then %do;

/* composite multiplier*/

CM = 20/(10*(SQRT(bwelghts*R*bwelghts YY)

/* calculate U and K values */

Uvec = diag(CM) *bweights;

K = (SUM(Uvec)*50)-100;
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%end;

/*transform b-weights to u and k values for Tierl */
%else %if &TYPE=TIER1 %then %do;
/* calculate U and K values */
Uvec = bweights; )
/* sum ASVAB means weighted by their respective b-weight*/
K = SUM(Uvec#Means'); :
%$end;

/*merging u values with k value and adding a column for JFNO*/
UKvec = J{(nrow(K),1,idxJF) || Uvec || K;

append from UKvec;

end;

close &UKDATA;
close &BETADATA;

quit;

run;

$mend;
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/************************************'k****-k**********************************

Compute criterion scores for individuals in sample &CrossSample

Note: TYPE=ASSIGN prepare cost data in preparation for optimal classification
using PROC TRANS.

*%* REQUIRED IN SIMULATION ***

****************************************************************************/

$macro
ComputeCriterionScores(CriterionData,CrossSample,JFWgtData,JFSOLN,TYPE);

$if &TYPE=ASSIGN %then %do;
proc sort data=kfvlib.entryMOS150 out=tmp;
by &JFSOLN;
run;
proc means data=tmp noprint;
var allocKFV;
by &JFSOLN;
output out=AllocData sum=;
run;
%end;

proc iml;
use &JFWgtData;
read all var{K GS AR AS MK MC EI VE} into WgtMat;
close &JFWgtData;

use &CrossSample;

read all var {GS AR AS MK MC EI VE} into X;
close &CrossSample;

X = repeat (-1,nrow(X),1l) || X;

Y = X*t (WgtMat);
create &CriterionData var ("JE1":"&JFSOLN");

$if &TYPE=ASSIGN %then %do;
use AllocData;
read all var{allocKFV} into tmpvec;
tmpvec = t{tmpvec);
append from tmpvec;
close AllocDhata;
%$end;

append from Y;
close &CriterionData;

quit;
run;

$mend;
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/****************************************************************************

Optimally assign persons to JFSOLN jobs. The program then compute their
predicted performance in their respective optimal jobs.

**% REQUIRED IN SIMULATION ***
ek ko ok ek ok ok ko ok ok ke ek ko ko Rk ko k ok k ok ko Rk Rk ko k ko k ok kR ko k ko ko k ok ok /

$macro OptimalAssignmentPredictedScores(OPJMData,EvalData,AssignData,JFSOLN);

data TmpAssign;
set &AssignData;
if n_>1 then do;

person = 'P' || put( n -1,z4.);
supply = 1;
end;
run;

proc trans cost=TmpAssign out=AssignSolution maximum;
tailnode person;
headnode JF1-&JFSOLN;
supply supply;

run;

data tmp;
array AJF150{150} JF1-JF150; /* not all 150 use all the time */

set AssignSolution end=last;
if n_>1 and "last;
do &JFSOLN=1 to 150 until (AJF150{&JFSOLN}>0);end;
randToSort = uniform(8000+&IREP);
keep person &JFSOLN randToSort;
run;
proc sort data=tmp;
by &JFSOLN randToSort;
run;
proc sort data=kfvlib.entryMOS150 out=tmp2;
by &JFSOLN;
‘run;
data tmp2;
set tmp2;
do i=1 to allocKFV;
output;
end;
keep &JFSOLN MOS150;
run;
data MOS150assignlIdx;
merge tmp tmp2;
by &JFSOLN;
keep MOS150 &JFSOLN person;
run;
proc sort data=MOS150assignIdx;
by person;
run;

proc iml;
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use &EvalData;
read all var ("JF1":"JF150") into matY;
close &EvalData;

use MOS150assignIdx;

read all var{MOS150} into MOS150idx;
read all var{&JFSOLN} into JFSOLNidx;
close MOS150assignldx;

assignN = nrow(matY);
optY = repeat(0,assignN,1);
do i=1 to assignN;
optY[i] = matY[i,MOS150idx{il];
end;

outMat = v .
repeat(&IREP,assignN,l)|Irepeat(&IREPC,assignN,1)||M08150idx|IJFSOLNidxlioptY
; v

create &0OPJMData var{REP REPC MOS150 &JFSOLN YPP};

append from outMat;

close &OPJMData;

quit;
run;

$mend;




/*****************************************'***********************************

Program implenting the K-Fold validation of JZ procedure

****************************************************************************/

gmacro KFoldEvalMPP(KFVOPJMDATA,RANDSEEDBASE,JFSOLN,BCONSTRAINT,UTIER,
REPSTART, REPEND) ;

/* Currently number of sample C partitions is fixed */
$let NUMREPC=5;

$do IREP=&REPSTART %to &REPEND;
$let REPSEED=%eval (4§RANDSEEDBASE+&IREP);

/* Partition data in samples A+B+Cl+C2+...+C&NUMREPC */
%CreateSampleABC(&IREP,&REPSEED,&NUMREPC);

/* Using sample A, compute weights for evaluation of MPP -- always based on
JF150 */

* Compute descriptive stats;
%ComputeDescriptives(SampleDataA,descripA,corrA,covA,covRefpopA);

* Step 1 - correct MOS validity for criterion unreliability and
restriction in range;

%CorrectUnreliability(corXYA,corCVA,descripA,corrA,kvaib.entfymoslSS);

* note: range restriction correction relative to Army - covRefpopA
computed from input data;

%CorrectRangeRestriction(validityA,covRefpopA,covA,corCVA);

* Step 2 - compute JF validities -- corrected to Army input population;

%JFValid(JFlSOvalidityA,validityA,JF150,kvaib.entrymosl55);

* Step 3 - compute beta weights —- CONSTRAINT=NONE for evaluation sample
A ;

%BetaWeights(JFlSOBetaA,covRefpopA,JFlSOvalidityA,JFlSO,NONE);

* Step 4&5 -- final JF150 evaluation weights for computing MPP -- note
param TIER1 ;

¥

%UKWeights(JFlSOukA,covRefpopA,kvaib.PopDescripArmy,JFlSOBetaA,JFlSO,TIERl);

/* Using sample B, compute assignment weights based on solution &JFSOLN */
* Compute descriptive stats;
%ComputeDescriptives(SampleDataB,descripB,corrB,covB,covRefpopB);
* Step 1 - correct MOS validity for criterion unreliability and
restriction in range; .
%CorrectUnreliability(corXYB,cérCVB,descripB,corrB,kvaib.entrymoslSS);
* note: range restriction correction relative to Army - covRefpopA
computed from input data;

%CorrectRangeRestriction(validityB,covRefpopB,covB,corCVB); -
* Step 2 - compute &JFSOLN JF validities -- corrected to Army input

population; ‘
%JFValid(JFSOLNvalidityB,validityB,&JFSOLN,kvaib.entrymoslSS);
* Step 3 - compute &JFSOLN beta weights -- CONSTRAINT=NONE for evaluation

sample A ;
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$BetaWeights (JFSOLNBetaB, covRefpopB, JFSOLNvalidityB, &JFSOLN, &BCONSTRAINT) ;
* Step 4&5 -- final &JFSOLN assignment weights -- note param NOT TIER2
(NOT want visible tier) ;

$UKWeights (JFSOLNukB, covRefpopB kfvLib.PopDescripArmy, JFSOLNBetaB, & JFSOLN, &UT
IER);

/* Using sample C subsets */
$do IREPC=1 %to &NUMREPC;
* Compute prediction/eval criterion scores using sampleA MOS150 LSE
wgts (JF150ukA) ;

%ComputeCriterionScores(CréssDataEval,SampleDataC&IREPC,JFlSOukA,JFlSO,EVAL);
* Compute analysis/assignment criterion scores using sampleB JF
solution wgt ; ’ ’

%ComputeCriterionScores(CrossDataAssign,SampleDataC&IREPC,JFSOLNukB,&JFSOLN,A
SSIGN) ;
* Run optimal assignment;

%Opt1malAs51gnmentPred1ctedScores(RepOPJMdata CrossDataEval ‘CrossDatalAssign, &
JEFSOLN) ; :
* Append OPJM data ;
proc append base=&KFVOPJMDATA data=RepOPJMdata;
run;
%end;

$end;
$mend;

/*
%let TMPJF=JF9;
proc datasets; delete TmpMpp&TMPJF;run;
%KFoldEvalMPP(TmpMpp&TMPJF,1001,&TMPJF,POSITIVEl,TIERZ,1,1);
proc means data=TmpMpp&TMPJF; .
var YPP;
* 'class REPC;
run;

$let TMPJF=JF17;
proc datasets; delete TmpMpp&TMPJF run;
$KFoldEvalMPP ( TmpMpp&TMPJF, 49,1001, &TMPJF, POSITIVE], TIERZ 1,1);
proc means data=TmpMpp&TMPJF;

var YPP;
run;

$let TMPJF=JF150;
proc datasets; delete TmpMpp&TMPJF;run;
$KFoldEvalMPP (TmpMpp&TMPJF, 49,1001, &TMPJF, POSITIVEL, TIER2,1,1);
proc means data=TmpMpp&TMPJF;
var YPP;
run;

*/
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/****************************************************************************

Calculate overall MPP by replication across conditions:
NUM_JF, BETA_ CONSTRAINT, TIER(a.k.a. EQUAL VARIANCE)

****************************************************************************/

options formchar='|~-++++++' nodate nonumber;

/* *%* EDIT AS NEEDED *** Output data library */
libname mppsim "D:\NEW AA\SAS Workspace \KFVPGMDISTN\MmmSimData";

data ypp/view=ypp;

set
mppsim.ypp jf9 none_tierl 1_49
mppsim.ypp_jf9 none_tier2 1 _49
mppsim.ypp_jf9_positive1_tier1_l_49
mppsim.ypp jf9_positivel tier2 1 49
mppsim.ypp_jf9 positive2_tierl 1 49
mppsim.ypp_jf9 positive2_ tier2 1_ 49
mppsim.ypp_jfl7_none_tierl 1 49
mppsim.ypp_jf17 _none_tier2_1 49
mppsim.
mppsim.ypp_jf17_positive1_tier2_l_49
mppsim.ypp_jfl7_positive2_tier1_1_49
mppsim.ypp_jf17_positive2_tier2_ 1_49

.
14

if in_jf9 _none_tierl then do;

(in=in_3jf9 none_tierl)
(in=in_3jf9 none_tier2)
(in=in_jf9 positivel_tierl)
(in=in_jf9_positive1_tier2)
(in=in jf9 positive2_tierl)
(in=in_ jf9 positive2_tier2)
(in=in_jf17_none_tierl)
(in=in_jf17_none_tier2)

ypp_jfl7_positive1_€ier1_1_49(in=in_jf17_positivel~tier1)

(in=in_jf17 positivel_tier2)
(in=in_jfl7_positive2_tierl)
(in=in_jf17 positive2_tier2)

num_jf=9; beta_constraint=0; tier=1; end;
else if in_jf9 none_tier2 then do;
num_jf=9; beta_constraint=0; tier=2; end;
else if in_jf9 positivel_ tierl then do;
num_jf=9; beta_constraint=1; tier=1; end;
else if in_jf9_positivel_tier2 then do;
num_jf=9; beta_constraint=l; tier=2; end;
else if in_jf9 positive2_tierl then do;
num_jf=9; beta_constraint=2; tier=1; end;
else if in_jf9 positive2_tier2 then do;
num_jf=9; beta_constraint=2; tier=2; end;
else if in jfl17 none_tierl then do;
num_jf=17; beta_constraint=0; tier=1; end;
else if in jf17_none_tier2 then do;
num_jf=17; beta_constraint=0; tier=2; end;
else if in jfl7_positivel_tierl then do;
num jf=17; beta_constraint=1; tier=1; end;
else if in_jfl7 positivel_tier2 then do;
num_jf=17; beta_constraint=1; tier=2; end;
else if in jf17_positive2_tierl then do;
num_jf=17; beta_constraint=2; tier=1; end;
else if in_jfl17_positive2_tier2 then do;
num_jf=17; beta_constraint=2; tier=2; end;

run;

proc means data=ypp noprint;

by num_jf beta_constraint tier rep repc;

var ypp;
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output out=mpp overall; run;
data mppsim.mpp_overall;
set mpp overall;
if _stat_='MEAN';
drop _type _freqg _stat_;
rename ypp=mpp;
run;
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APPENDIX D: PLOTTING OF MEAN MPP AND STANDARD ERROR BY MOS




Figure 1 : _ ,
MPP and Standard Error by MOS and Job Family Configuration for CL, CO, and EL

Job Families Using Unstandardized Test Composites
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Figure 2
MPP and Standard Error by MOS and Job Family Configuration for FA, GM, and
MM Job Families Using Unstandardized Test Composites
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Figure 3 , _
MPP and Standard Error by MOS and Job Family Configuration for OF, SC, and ST

Job Families Using Unstandardized Test Composites
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Figure 4

MPP and Standard Error by MOS and Job Family Configuration for CL, CO, and EL

Job Families Using Standardized Test Composites
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Figure 5

MPP and Standard Error by MOS and Job Family Configuration for FA, GM, and
MM Job Families Using Standardized Test Composites
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Figure 6

MPP and Standard Error by MOS and Job Family Configuration for OF, SC, and ST
Job Families Using Standardized Test Composites
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APPENDIX E: MEAN MPP AND STANDARD ERROR BY MOS



Table 1 : ' ,
Mean MPP and Standard Error by MOS and Job Family Configuration Using

Unstandardized Test Composites
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Table 2
Mean MPP and Standard Error by MOS and Job Family Configuration Using

Standardized Test Composites
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0.0870|0.5066| 0.2123(0.5106| 0.0483| 0.4739
0.1206|0.2835] 0.2208}0.3016( 0.0742| 0.3008
0.0567|0.1892| 0.1253}0.2116 0882 0.2112
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.0024]0.2148| 0.0662| 0.2363 0210 0.3205
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.2372|0.0844| 0.1424}0.1459 1079 0.1374
.274110.3820| 0.1921(0.3631 0140 0.2953
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Table 2
Mean MPP and Standard Error by MOS and Job Family Configuration Using

Standardized Test Composites

77| 0.3710{0.2516| 0.34790.2488] 0
78 | 0.0983|0.2300| 0.0315]0.2720| -0
[79 | 0.0396]0.3014] 0.0149]0.3444] -0
80| 0.0411]0.1890 | -0.0284 0.2669| 0.
81| -0.0301|0.2627 | -0.0921|0.3376| 0.
82| 0.1023{0.2377| 0.0220]0.3038| 0.
83| 0.1440[0.2438| 0.0056|0.3249| 0.
84| -0.1724]0.2731| -0.0271]0.2782| ©
85| -0.0467 | 0.3476 | -0.0239) 0.3816 | -0
8 |-0.1311]0.4401-0.1374]0.5357| 0
87:1-0.2688 | 0.4267| -0.2305|0.4827| -0
-0.0391|0.3226| -0.2328 | 0.2727 | -0
-0.0515|0.4473| 0.0065|0.4280| O
0.0081| 0.5574 | -0.1482 | 0.4808 | -0

- ~0.1138] 0.6056 | ~0.1750 | 0.5348 | -0
0.0362]0.3776| -0.0029| 0.3511 | -0
0.0465|0.3221| 0.1088|0.3048| 0
0.1662|0.1211| 0.1475|0.1205| ©
-0.1164|0.3394 | -0.1114|0.3121 [ -0
-0.0476|0.1823]-0.0433|0.1807| 0
0.0496|0.2188| 0.0522|0.2230| ©
0.1620]0.2340| 0.1470|0.2142| ©
0.1553[0.4692| 0.1759(0.4514| 0
0.0589]0.4904| 0.0577|0.4856| -0
0.0526|0.1707 | -0.0123| 0.1583| 0.

102| 0.0388|0.4184| 0.0063]0.3914| 0.
03| 0.0328]0.4144|-0.0111|0.3707| 0.
104| 0.0977]0.3453| 0.0647|0.3240] 0.
105| 0.1282]0.2869| 0.0625|0.2906] 0.
0.1168|0.4441| 0.1141]0.4780| 0.
0.0943|0.1812| 0.0422{0.1707| o.

[ -0.2802[0.1162 | -0.1590 | 0.1260 | 0.
109 | -0.1245]0.3375 | -0.0573| 0.3680 | -0
110 | -0.4798|0.1178 | -0.2738 | 0.1420| ©
11| 0.09350.4405| 0.1563/0.4545] 0
112 -0.1995 | 0.3154 | -0.2670| 0.3071 ] -0
113 -0.2982 | 0.3066 | -0.2834 | 0.3406| 0
0.1505]0.2104| 0.2350(0.1994 -0
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Table 2

Mean MPP and Standard Error by MOS and Job Family Configuration

Standardized Test Composites

15| 0.1675]0.0691| 0.2046|0.0763| 0.2926] 0.0929
116 | 0.07390.2504| 0.08870.2301 | -0.0247 0.1957
117 { -0.1758 | 0.0746 | -0.1116{0.1153| 0.0012}0.1294
118 | -0.0530|0.3800| 0.02440.3863| 0.0397|0.3383
1197 0.0598|0.2567| 0.0740|0.2661| 0.04890.2158
1201 -0.0941{0.2511 | -0.1466| 0.2360 | ~0.1144 | 0.3440
121 | -0.0976 | 0.5841|-0.0030| 0.5975 | -0.3409 | 0.5327
1221 -0.0733|0.2067 -0.1064 | 0.2288 | 0.2287 | 0.2023
123|-0.0752|0.4769 | -0.0137 | 0.4812{ -0.1315| 0.3522
124 -0.1376 ] 0.5535|-0.0763 | 0.5115| 0.0249] 0.4653
257 -0.1190 | 0.5191 | -0.0176|0.5292| 0.0264 | 0.5079
.1901|0.5799| 0.0219|0.5502|-0.0570| 0.6030
.1986{0.4761 [ -0.1150|0.4794 | -0.0828 | 0.4154

.0700 | 0.4207 [ -0.0880 | 0.4327 | -0.3498| 0.4065
.0104]0.2845| 0.0613|0.3191|-0.2109| 0.2495
.0294|0.0956| 0.0605|0.0984| 0.1151{0.1077
.1443{0.0991| 0.1830(0.0986| 0.0304|0.1199
.237910.4820| 0.24790.4880 | -0.2534 | 0.4400
.1138{0.2195| 0.2048|0.2328| 0.1330|0.2243
.0269|0.0849| 0.0148|0.0868| 0.0122|0.1087

| -0.0968 | 0.2873 | -0.0735 | 0.2900 | -0.2651 | 0.2382
136 | -0.0786 | 0.4505 | -0.1035]0.4752 | -0.1617 | 0.4239
1371 -0.1547|0.0830| -0.1657 | 0.1435 | ~0.1590 | 0.1416
138 ] -0.0817 | 0.3741 | -0.1146 | 0.3798 | -0.3321| 0.3678
39| -0.1373(0.2873 | -0.1737|0.2979 | -0.2191 | 0.3323
140'| -0.31850.4141 | -0.3983|0.4129| -0.2157| 0.5677
141 | -0.0340| 0.4171| 0.1995]0.5144 -0.1206 | 0.3077
142 | -0.0304 | 0.3477 | -0.0972| 0.3213 | -0.1356 | 0.3065
143 -0.1528 | 0.2336 | -0.2712| 0.2677 | -0.3618 | 0.3274
144 | -0.12710.1336 | -0.2205| 0.1621 | -0.2901 | 0.1860
1-0.1318{0.3163| -0.1692]0.3033|-0.1019 | 0.2701
146 | -0.18470.3037| -0.2754 | 0.2924 | -0.3334 0.3569
147°{ -0.1759| 0.3729| 0.27390.4230| 0.0996 0.3162
148 -0.0808 | 0.2286| -0.3258| 0.1988 | -0.1562| 0.3195
149'| -0.1417 | 0.2586 | -0.2767 0.2569 | -0.3610 | 0.2718
150 | -0.0342 | 0.1942| 0.0059|0.1987|-0.1397| 0.3010
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APPENDIX F: DOCUMENTATION OF CUT SCORE EQUATING PROCEDURE, SAS
PROGRAM, AND TABLES OF CUT SCORES FOR 17 AND 150 JOB FAMILIES



Cut Score Equating Procedure

Proposed MOS-specific cut scores using alternative composites based on the 17 and 150
job family configuration were computed to be “gquivalent” to existing cut scores under the
existing LSE composites based on the 9 job family. By “equivalent” we mean that accessions for
a given MOS based on the alternative composite and proposed cut score for the MOS will have
the same mean predicted performance (MPP) as accessions based on the current composite and
existing cut score for the same MOS.

Generally, varying criterion validities can be expected between the existing and
alternative composites. When the alternative composite has higher validity compared to the
existing composite, a cut score that is lower than the existing value can produce the same level of
MPP. Thus, the benefit of improved composite validity is achieved through large pool of eligible
applicants (i.e., higher selection ratio). When the alternative composite has lower validity, we
can compensate for its lower predictive power by setting a higher cut score that will produce the
same level of MPP. This is achieved at the expense of a smaller eligible pool of higher average
quality applicants than the existing pool. These ideas underlie the cut score equating procedure
describe below.

Denote the current composite for the mth MOS by X, with validity R, and cut score

currently set at C,, and the alternative composite by X, , with validity R, . Also denote the

common mean and standard deviation under the current and alternative composites (using 9, 17
or 150 job families) by constants x, =100 and o, =20. Using these notations the MPP under

the current and alternative composites and cut scores can be written as

MPP, =R, x(_'u_’“c___/i"_J
O-X

MPP, =R, ,{Mj
O-I

The terms inside the parentheses are simply the truncated mean of the composite above the
respective cut scores in standardized form.

Under the equivalent cut score condition, we have MPF, equals MPF,, where the latter

is a known value and the former involves the unknown cut score C, of interest. For this equality

to be useful in solving for the equivalent alternative cut score, first we need to expand the
truncated means of the composites X, and X, in the MPP expressions above as function of the

composite mean and variance. Assuming a normal distribution for the composite in the applicant
population and using standard mathematical results (e.g., Greene 1997), we obtain
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X

C -
:uX>Ca zlux +O—xxﬂ{ z #X}

g

X

C -
1uX>C,, = :ux +O-x Xﬂ{—"—-&‘)

The “hazard” function A is given by the expression below in terms of the standard normal density
#(z) and cumulative distribution o(z).

Mz)= #(2)

1-@(z)

Setting MPP under current and alternative composites and cut scores equal, and after
some algebraic manipulations to separate known and unknown terms on either side of the

n X X

Thus, to obtain the unknown equivalent cut score Cn, we solve for the zero of the non-linear
equation

0=2{——C"_"*)-L
o

X

‘where the constant L is simply the known value of the entire expression on the left-hand side of
the preceding equality relationship. The solution to this problem was carried out using the
Newton iterative method. The SAS program implementation of the entire cutscore equating
procedure appears on the next page.

F-3



/***************************************'&************************************

Data for Input to Cut Score Equating Problem

MOS-JF-CutScore Configuration:

(1) mos = MOS ID

(2) mosnumid = numeric ID (1,2,...,155)

(3) j£0103_9 j£0103_17 §£0103_150 = numerice ID for JF9, JF17, and JF150 as
of JANO3

(4) c0 = cut score based on JF9 ocmposite

Input Data to Cut Score Equating Problem:

(1) zc0 = standardized cut score on JF9

(2) q0 selection ration based on c0 and JF9 composite (l-probnorm(zc0))
(3) 0 validity of JF9 composite

(4) pp0 = predicted performance based on c0 and JF9 composite of MOS

(5) rl = validity of JF17 composite

Output Data from Cut Score Equating Problem:

(6) zcl = standardized cut score on JF17 composite

(7) ql = selection ratio on JF17 composite and cut score

(8) ¢l = cut score on JF17 composite that gives the same predicted

performance
****************************************************************************/

/****************************************************************************

Cut Score Equating Calculations

NOTE: MOS in JANO3 file that not found in the S8QT data are excluded. The
ASVAB validities

for these MOS are not available.

****************************************************************************/

%let dataMosCsConfig=1lcs.mosCurCS;
%let dataRXY155=lvalid.YouthValid;
2let dataRXY9=1lvalid.JF9YouthValid;

gmacro CutScoreEquate(dataRXY17,dataYouthCov,dataCSsoln,AltNumJF);
$let PI=3.14159265;
proc iml;

/****************************************************************************

Newton procedure for solving root of LAMBDA function
****************************************************************************/
start F_LAMBDA(Z);
phiz = exp (0.5* (-z##2)) /sqrt (2*&PI); lambda = phiz/(l-probnorm(z));
return(lambda) ;
finish F_LAMBDA;
start DF_LAMBDA(z);
phiz = exp (0.5* (-z##2)) /sqrt (2*&PI); dphiz = -z*phiz; pnormz =
probnorm(z);
dlambda = ( dphiz*(l-pnormz) + phiz##2 ) / (l-pnormz) ##2;
return (dlambda) ;
finish DF_LAMBDA;
start SOLVE_LAMBDA(lambdaConstant,initZ,epsZ, maxIter,opt);
if (opt(l]) then
print lambdaConstant [label="1lambdaConstant”
format=10.8],initZ[label="initZ" format=10.8];
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z0=initZ; minDiff=epsZ; zDiff=1; maxiter=20;
do iter=1 to maxiter while(zDiff>minDiff);
zl = z0 - (F_LAMBDA(ZO)~lambdaConstant)/DF_LAMBDA(ZO);
zDiff = abs(zl-z0);
z0 = z1; .
v if (opt[2]) then
print iter[label="iter" format=3.0] z0[label="ZSOLN" format=10.8]
zDiff[label="zDiff" format=10.8]; :
end;
return(z0);
finish SOLVE_LAMBDA;
/* Testing Code
zcSOLN = 1.987654;
lambdalHS = F_LAMBDA (zcSOLN) ;
zcSolved = SOLVE_LAMBDA(lambdaLHS,O,le—6,20);
print zcSolved[label="zcSolved" format=10.8];
*/

/****************************************************************************
Read MOS-JF-CutScore Configuration Data
****************************************************************************/
use &dataMosCsConfig; ,
read all var{mosnumid} into mosNumID;
read all var{jf0103 9} into JF9;
read all var{cutscore} into JF9CS;
read all var{jf0103 &AltNumJF} into JFalt;
close &dataMosCsConfig;
*print mosNumID JF9 JFalt JF9CS;

/****************************************************************************

Read MOS155, JF9, JFalt Youth ASVAB validities, and Youth ASVAB covariance
matrix
****************************************************************************/

TestNames = {GS AR AS MK MC EI VE};

use &dataRXY155;

read all var (TestNames) into rxyl55;

close &dataRXY155;

use &dataRXY9;

read all var(TestNames) into rxy9;

close &dataRXY9;

use &dataRXY17;

read all var({TestNames) into rxyl7:

close &dataRXY1l7;

use &dataYouthCov;

read all var (TestNames) where(names?TestNames) into cxxYouth;

N close &dataYouthCov;
*print rxyl55 rxy9 rxyl7 rxxYouth;
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/****************************************************************************

Quantities for Current JF9 composite that are available or readily computed:
(1) zcO = standardized cut score on JF9 .
(2) g0 = selection ration based on c0 and JF9 composite (1-probnorm(zc0))
(3) r0 = validity of JF9 composite

) pp0 = predicted performance based on c0 and JF9 composite of MOS

Quantities for "New" JFalt composite that are available or readily computed:

Known quantities from "new" JFalt Composite:

(5) rl = validity of JFalt composite

Quantities for "New" JFalt composite that are caculated through cut score
equating: '

(6) zcl = standardized cut score on JFalt composite

(7) ql = selection ratio on JFalt composite and cut score

(8) cl = cut score on JFalt composite that gives the same predicted
performance
****************************************************************************/

meanComp=100; stdComp=20;

stdXX = sqrt(vecdiag(cxxYouth));

rxxYouth = diag(1/stdXX)*cxxYouth*diag(l/stdXX);

numMos = nrow (mosNumID);

zcO=repeat (0, numMos) ; gO=repeat (0, numMos) ; rO=repeat (0, numMos) ;
ppO=repeat (0, numMos) ;

zcl=repeat (0, numMos) ; gl=repeat (0, numMos) ; rl=repeat (0, numMos) ;
JFaltCS=repeat (0, numMos) ;

do idxMos=1 to numMos;

2c0[idxMos] = (JF9CS[idxMos]-meanComp) /stdComp;
g0 [idxMos] =1 - probnorm(zcO[idxMos]) ;
r0[{idxMos] = sqrt(rxylSB[idxMos,]*inv(rxxYouth)*t(rxy9[JF9[idxMos],]));

ppOlidxMos] = r0[idxMos]* (meanComp + stdComp*F_LAMBDA (zcO[idxMos]));

rl{idxMos] = :
sqrt(rxy155[idxMos,]*inv(rxxYouth)*t(rxyl7[JFalt[idxMos},]));

lambdaLHS = (rO[idxMos]/rl[idxMos})*F_LAMBDA(ch[idxMos]);

zcl [idxMos] = SOLVE_LAMBDA(lambdaLHS,ch[idxMos},le-G,ZO,{l 1Y)

gl{idxMos}] = 1 - probnorm(zcl [idxMos});

JFaltCS[idxMos] = meanComp + stdComp*zcl [idxMos];

end;

matOut = mosNumID || JF9CS || zcO || g0 || x0 [] rl || zcl || gl ||

JFaltCs;
create &dataCSsoln var{mosNumID JF9CS zcO g0 r0 rl zcl ql JFP&ALtNumJF.CS};

append from matOut;
close &dataCSsoln;

quit;
run;

g$mend;
options mprint=1;

%CutScoreEquate(lvalid.JFl?YouthValid,lvalid.PopConouth,lcs.csSolnFixPP_JFl7

 17)
%CutScoreEquate(lvalid.JflSOyouthvalid,lvalid.PopConouth,lcs.csSolnFixPP_JFl

50,150);
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Table 1
New and Old Cut Scores and Qualification Rates by MOS for 17 Job Families

MOS [ JFOCS| ZCO Qo RO R1 ZC1 Q1 JF17CS
4] 87, -0.65] 0.742153889| 0.528374924] 0.50900736] -0.615296654| 0.730820587| 87.69406692
2 87| -0.65 0.742153889| 0.602825356| 0580085098 -0.614256995| 0.730477242| 87.71486011
73| 87| -0.65] 0.742153889] 0.590782909| 0.568950082| -0.615003971] 0.730723951] 87.69992059
4| 87| -0.65| 0.742153889] 0.540846301| 0.520561268| -0.614468113| 0.730546981] 87.71063775
5/ 87| -0.65 0.742153889] 0.593138316 0.630243661  -0.705168449 0.759647293| 8589663103
6| 87| -0.65 0.742153880| 0.59534116] 0.632041602| -0.704398351| 0.759407634, 8591203298
8] 91| -0.45 0.67364478  0.624690167| 0.624690167 -0.45| 0.67364478 91
9 91| -0.45] 0.67364478] 0569657011, 0.569657011 045 0.67364478 91
10| 91| -0.45] 0.67364478 0.66029159| 0.66029159 -0.45| 0.67364478 91
11] 91| -0.45| 0.67364478| 0.662381536| 0.662381536 -0.45| 0.67364478 o1
~ 12| 95| -0.25[ 0.508706326| 0.663324105| 0.663324105 -0.25] 0.598706326 95
14| 98| -0.1] 0.530827837| 0.648680415| 0.648680415 -0.1] 0.539827837 98
22| 87| -0.65] 0.742153889] 0.605869684| 0.643843124| -0.705268283| 0.759678353| 85.89463434
24] 87| -0.65| 0.742153889] 0.620224189 _0.66069355 -0.707436999| 0.760352524| 85.85126002
26| 92| -0.4] 0.655421742] 0.689912396| 0.704544844| -0.421706029| 0.663380199] 91.56587941
20| 102| 0.1] 0.460172163) 0.5921857| 0.500830448| 0.103006391| 0.458978949| 102.0601278
33| 98| -0.1] 0.530827837| 0.669540892| 0.669540892 -0.1] 0.539827837 98
35 80| 055/ 0.708840313| 0.610008827| 0.604585071| -0.541342954| 0.705864391| 89.17314091
37| 107| 0.35] 0.363169349] 0.701824913] 0.70111151) 0.351488998| 0.362610762| 107.02978
39| 98| -0.1] 0.539827837| 0.62863297| 0.62863297 -0.1] 0.539827837 98
40| 116 0.8 0.211855399] 0.665774129| 0.663984154| 0.804749204| 0.21048221 116.0949841
42| T 102| "0.1] 0.460172163| 0.667514629| 0.678873927| 0.077982631] 0.468920935] 101.5596526
43| 107| 0.35] 0.363169349| 0.668178174| 0.678647341] 0.327356329| 0.371699196] 106.5471266
44| 102| T 0.1| 0.460172163 0.685673394| 0.694533268] 0.083228333| 0.466834992| 101.6645667
25| 98| S0.1] 0.530827837| 0.647524571| 0.657463354] -0.118158605] 0.547029006] 97.6368279
48] 88| -0.6] 0.725746882| 0.72296745| 0.756598437 -0.642488143| 0.739721857| 87.15023714
40| 97| -0.15] 0.559617692] 0.735289835| 0.769205125] -0.202108333| 0.580083983| 95.95783334
50| 88| -0.6| 0.725746882] 0.600596715| 0.628673893 -0.642986236| 0.739883484 87.14027529
51| 93] -0.35| 0.636830651| 0.640425362| 0.672029756| -0.400670342| 0.655668575| 91.98659317
52| 97| -0.15| 0.559617692 0.694022416| 0.690916029| -0.144746289| 0.557544405  97.10507422
53] 97| -0.15] 0.559617692 0.71979739  0.754128421, -0.203820078| 0.580752949| 95.92359843
56| 93| 0.35] 0.636830651| 0.735260276 0.770509576 -0.399274616| 0.655154566] 92.01450767
58| 88| -0.6 0725746862 0.701389192| 0.670573296] -0.557137068| 0.711283108| 88.85725864
50| 88 -0.6| 0.725746882| 0.686933742| 0.657246038| -0.557860406 0.711530145  88.84279188
60 88| -0.6] 0.725746882| 0.656507343| 0.627799471| -0.557346082 0.711354502| 88.85307835
61| 93| -0.35] 0.636830651| 0.728627437| 0.721701283) -0.33980615 0.632998742| 93.20387701
62| 102| 0.1] 0.460172163] 0.60610754| 0.621789864| 0.06675345| 0.473388991] 101.335069
63| 97| -0.15] 0.559617692| 0.680025098| 0.712658695| -0.204139466| 0.580877743| 95.91721068
64| 97| -0.15] 0.559617692| 0.709182712| 0.743268433| -0.204220618| 0.58090945| 95.91558764
65] 92| -0.4 0.655421742 0.746809578| 0.76818708] -0.42913755  0.666088437 91.41724899
66] 96| -0.2] 0579259709/ 0.664528937| 0.646312705| -0.167998996 0.566707966| 96.64002007
67| 104| 0.2] 0.420740291] 0.724644707| 0.69259301| 0.262882774  0.396320467| 105.2576555
70| 87| -0.65] 0.742153889, 0.70000591| 0.693833377| -0.641822058| 0.730505637| 87.16355884
71 88| -0.6] 0.725746882| 0.740144864] 0.707759246 -0.557318261| 0.711344999| 88.85363479

Note. MOS = MOS ID Number; JF9CS = Old AA Cut Score (9 JF Level); ZCO = Standardized Old AA
Cut Score; Q0 = Qualification Rate Under Old Cut Score; R0 = Validity of 9 JF -Level AA Composite; R1
= Validity of 17 JF Level AA Composite; ZC1 = Standardized New AA Cut Score; Q1 = Qualification
Rate Using New Cut Score; JF17CS = New AA Cut Score (17 JF Level).
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Table 1 (cont’d)

New and Old Cut Scores and Qualification Rates by MOS for 17 Job Families
MOSTJFICS! ZCO0 | Qo i RO R1 ZC1 | Q1 JF17CS
72] 88 -0.6| 0.725746882] 0.705386736| 0.674175432) -0.556822855 0.711175766| 88.86354291
73 88| -0.6] 0.725746882] 0.641538019; 0.614321678 -0.558659727| 0.711803015| 88.82680545
74 87| 2065/ 0.742153889 0.713812452| 0.713335988| -0.649384606| 0.741955094  87.01230788
75 97| -0.15! 0.559617692| 0.764372563| 0.764445456 20.15011154| 0.559661692| 96.9977692
76 97' 0.5 0.559617692| 0.792072668| 0.791226469] -0.148749321| 0.559124279| 97.02501359
77 97| -0.15] 0.559617692| 0.750551996 0.750970597 -0.150652098| 0.559874919| 96.98695804
78 87| -0.65| 0.742153889| 0.676698726| 0.678247461 20.652105523| 0.742833449| 86.95788953
79 87| -0.65| 0.742153889 0.64366095  0.645477037| -0.6525904721 0.742991205| 86.94810558
81] 97| -0.15] 0.559617692| 0.728881979| 0.726486185 -0.146145427 0.558096707 | 97.07709145
82| 102| 0.1 0.460172163| 0.69485919, 0.693992438 0.101637274| 0.459522296| 102.0327455
83| 87| -0.65| 0.742153889 0.750439786| 0.749837689 -0.649260225| 0.741914905| 87.01479551
84 97| -0.15 0.559617692| 0.691086211| 0.690103098 -0.148334177| 0.558960478| 97.03331646
85 102| 0.1] 0.460172163| 0.701452311| 0.729104488 0.049870208| 0.480112909| 100.9974042
86 97| -0.15. 0559617692 0.70697104| 0.703505772| -0.14424477| 0.557346405| 97.1151046
87| 102| 0.1] 0.460172163] 0.717587198| 0.707256229 0.119096867| 0.452599306| 102.3819373
88 102| T0.1] 0.460172163| 0.627235496] 0.62447777| 0.105785404| 0.457876309| 102.1157081
89102 “0.1] 0.460172163] 0.711505261| 0.71170251] 0.099636559| 0.460316434| 101.9927312
90| 102| 0.1 0.460172163] 0.672302894| 0.672714302) 0.099197971 0.460490543| 101.9839594
911 102 0.1/ 0.460172163| 0.738440547| 0.743938095| 0.09029515| 0.464026337| 101.805903
02| 102 0.1 0.460172163| 0.784300107| 0.782027342| 0.10380861| 0.458660617| 102.0761722
93] 102| 0.1] 0.460172163| 0.784078298| 0.786851176| 0.095375689| 0.462008213| 101.9075138
94| 102 0.1 0.460172163| 0.71409059| 0.729673218| 0.071872091| 0.47135185| 101.4374418
95 93] 70.35] 0.636830651| 0.721649898| 0.739391879| -0.375701582| 0.646430619| 92.48596837
97 93| -0.35 0.636830651| 0.637569126| 0.65821653] -0.383662211| 0.649385588| 92.32675579
99| 107| 0.35] 0.363169349| 0.423410229| 0.411633457| 0.391656386 0.34765606| 107.8331277
101 92| -0.4| 0.655421742| 0.698706419| 0.699100407 | -0.400585981| 0.655637516| 91.98828038
105 02| 0.4 0.655421742| 0.65003742| 0.650371295| -0.400533773| 0.655618293| 91.98932455
106] 03] 0.15 0.440382308  0.664871044] 0.66403832| 0.15168111] 0.439719228  103.0336222
107 06| -0.2| 0579259709 0.668700721| 0.678896435| -0.217222651| 0.585982583| 95.65554698
108 03| 0.4] 0.655421742| 0.65279443 0.642282328 -0.383053994, 0.649160135| 92.33892013
T112] _103] 0.15] 0.440382308| 0.689781704, 0.687766474 0.153926677| 0.438833775| 103.0785335
117 88| "-0.6/ 0.725746882| 0.686601595  0.688882708| -0.603129218| 0.726788635| 87.93741565
118 '88] -0.6| 0.725746882| 0.707626076| 0.675890021 -0.556215773| 0.710968321| 88.87568455
119] 85| -0.75| 0.773372648| 0.658118465| 0.674468889 20.771426019| 0.779772771| 84.57147962
"120] 92| -0.4] 0.655421742| 0.666742561| 0.688851107| -0.433641766 0.6677257| 91.32716468
121 88| -0.6] 0.725746882| 0.733410493| 0.701855772| -0.55805483) 0.711596528 88.83890339
122 85| -0.75] 0.773372648| 0.709052039] 0.709052039 -0.75| 0.773372648 85
123 97! 0.15| 0.559617692| 0.650034124| 0.645589902| -0.141960302| 0.556444319| 97.16079395
124] 107| 0.35] 0.363169349| 0.723223681| 0.676987953| 0.448751292 0.32680554 | 108.9750258
125 02| -0.4] 0.655421742| 0.723462278| 0.688546032 -0.347932303 0.636054488| 93.04135393
126 02| -0.4| 0.655421742| 0.731579645| 0.692634942 70.342343802| 0.633953912| 93.15312396
129]107| 0.35] 0.363169349| 0.713964828| 0.676729247 0.429741524| 0.333691837| 108.5948305
130 95| -0.25| 0.598706326| 0.703489738 0.703489738 -0.25| 0.598706326 95
T131]107| 0.35] 0.363169349| 0.740458173, 0.701597213 0.430267425| 0.33350056| 108.6053485
132 02| 041 0.655421742| 0.661641669  0.627934561| -0.344922685| 0.634923752| 93.10154631

Note. MOS = MOS ID Number; JFOCS = Old AA Cut Score (9 JF Level); ZCO = Standardized Old AA
Cut Score; Q0 = Qualification Rate Under Old Cut Score; R0 = Validity of 9 JF-Level AA Composite; R1
= Validity of 17 JF Level AA Composite; ZC1 = Standardized New AA Cut Score; Q1 = Qualification
Rate Using New Cut Score; JF17CS = New AA Cut Score (17 JF Level).
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Table 1 (cont’d)
New and Old Cut Scores and Qualification Rates by MOS for 17 Job Families

MOS [JFOCS] ZCO Qo RO | Ri ZC1 Qf JF17CS

133| 96| -0.2] 0.5/9259700] 0.703459776  0.668330344] -0.140644133| 0.555024459] 97.18711734
134| 7102|_0.1] 0.460172163 0.540006869| 0.505735404| 0.187672118| 0.425566844| 103.7534424
135 92| -0.4| 0.655421742] 0.678738208| 0.639920164| -0.33787774| 0.632272338| 93.24244521
137| ~ 92| “0.4] 0.665421742] 0.723581145' 0.715971111| -0.38897919| 0.65135423| 92.22041621
138| 85| -0.75] 0.773372648] 0.697797652| 0.697797652 -0.75] 0.773372648 85
139] 88! -0.6| 0.725746882| 0.674647315 0.64509594  -0.557270966| 0.711328845| 88.85458069
140| 88| -0.6| 0.725746882| 0.667530862| 0.639479244 -0.559062609| 0.711940504| 88.81874782
141] 92| -0.4] 0.655421742] 0.721646975| 0.706723333; -0.378161655| 0.647344746| 92.43676689
142] 96| -0.2] 0.579259709| 0.737485532 0.757922758| -0.231011139| 0.591346926| 95.37977722
143 93| -0.35| 0.636830651| 0.721584522| 0.718489973| -0.345419177| 0.635110369| 93.09161645
144] 92| -0.4] 0.655421742 0.704051744| 0.722670289| -0.42696104| 0.665296148| 91.46077919
145 92| -0.4] 0.655421742| 0.68449826] 0.702443632| -0.426733006 0.665213096| 91.46533987
146] 96| "-0.2] 0.579250709] 0.696044518| 0.715326945| -0.231001086| 0.591343021| 95.37997827
147]7102| 0.1 0.460172163] 0.633256782] _ 0.6489369 0.068155869| 0.472830779| 101.3631174
148 102| 0.1] 0.460172163] 0.63754039| 0.658876113| 0.057249181| 0.477173351| 101.1449836
149]03| -0.35] 0.636830651| 0.657476775| 0.658242868| -0.351239503| 0.637295662| 92.97520993
150]  102|  0.1] 0.460172163| 0.607719236] 0.725191857| 0.049927471| 0.480090093| 100.9985494
151] 92| -0.4] 0.655421742| 0.713548551| 0.740726056| -0.438504926] 0.66948985 91.22990148
152] 102| 0.1 0.460172163| 0.704493117| 0.729707014| 0.054361242| 0.478323679| 101.0872248
154] 93] -0.4| 0.655421742| 0.691700773| 0.717427129| -0.437624481| 0.669170739| 91.24751038

Note. MOS = MOS ID Number; JFOCS = Old AA Cut Score (9 JF Level); ZCO = Standardized Old AA
Cut Score; Q0 = Qualification Rate Under Old Cut Score; RO = Validity of 9 JF-Level AA Composite; R1
= Validity of 17 JF Level AA Composite; ZC1 = Standardized New AA Cut Score; Q1 = Qualification
Rate Using New Cut Score; JF17CS = New AA Cut Score (17 JF Level).
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Table 2

New and Old Cut Scores and Qualification Rates by MOS for 150 Job Families

MOS [JFOCS| ZCO Q | RO R1 ZC1 Qi JF150CS
~ 4| 87| -0.65] 0.742153889! 0.528374924]  0.4752681| -0.549990321] 0.70884008, 89.00001359
2] 87| -0.65 0742153889, 0.602825356  0.50534875| -0.638467207| 0.738415203| 87.23065586
3| “87| -0.65] 0.742153889| 0.590782909| 0.582748295| -0.63734273| 0.738049188| 87.2531454
4] 87| 0.65] 0.742153889| 0.540846301  0.49605518| -0.568756024| 0.715239139| 88.62467953
5| 87| 0.65| 0.742153889| 0593138316, 0.583612345| -0.635025874| 0.73729423| 87.20948252
~"'6| 87| -0.65 0.742153889 0.59534116] 0.503876042| -0.647728155] 0.741419605  87.0454369
8| 91| 0.45] 067364478 0.624690167| 0.583837466| -0.380196228| 0648100121, 92.39607544
9| 91| 045 0.67364478] 0.569657011| 0.569932557| -0.450490801| 0.673821707] 90.99018398
7017 91 -0.45] 0.67364478| 0.66029159| 0.6492342211 -0.432787255| 0.667415333| 91.34425489
11| T 91| -0.45| 0.67364478| 0.662381536| 0.653318653| -0.435069035| 0.668570402| 91.2806193
12| 95| -0.25 0.508706326] 0663324105 0.60326404  -0.141336758| 0.556198044| 97.17326484
14] 98| 0.1] 0.539827837| 0.648680415| 0.580543473| 0.037074543| 0.485212785| 100.7414909
22| 87| 10.65] 0.742153889] 0.605869684| 0.608148781| -0.653457006| 0.743269151| 86.93085989
54| 87| -0.65 0.742153889] 0.620224189| 0634552351  -0.670939019| 0.748870311, 86.58121961
56 02| -0.4] 0.655421742] 0.689912396 0.613927381| -0.275045676| 0.608359427| 94.49908647
20| 102| 0.1] 0.460172163| _ 0.5921857| 0.497792982 0.340002407 0.366927357| 106.8000481
330 08| “0.1| 0.530827837| 0.669540892| 0.617647499! -0.001212665| 0.500483783| 99.97574669
35| 89| -0.55| 0.708840313| 0.610008827 | 0.547886292| -0.443413884] 0.671266802| 9113172231
370 707| 0.35| 0.363160349] 0.701824913| 0.5826643671| 0.639346246| 0.261298855| 112.7869249
39 98| -0.1] 0.530827837| 0.628632907| 0.589447296| -0.021550936| 0.508596914| 99.56898129
40| 116] 0.8 0.211855300] 0.665774129| 0.562044096| 1.117181308| 0.131958405| 122.3436262
420 102 01| 0460172163 0.667514629 0.600896509| 0.242279127| 0.404281943| 104.8455825
43| 107| 0.35] 0.363169349| 0.668178174] 0.568036453| 0.600490253| 0.274089777| 112.0098051
44| _102] 0.1] 0.460172163| 0.685673394| 0.586686166| 0.314314816] 0.376640973 106.2862963
45| 08| 0.1 0.539827837| 0.647524571] 0.570754226| 0.056562875| 0.477446704| 101.1312575
48] 88| 06| 0.725746882| 0.72296745| 0.667234012! -0.522832647 | 0.699454641| 89.54334707
49| 97 -0.15| 0.559617692] 0.735289835] 0.672379244| -0.042761147| 0.517054032| 99.14477707
50| 88| -0.6 0.725746882| 0.600596715| 0563205817 -0.538401086] 0.704849912| 89.23197628
51 93| 0.35 0.636830651| 0.640425362| 0.546217486 -0.173423593  0.568840759| 96.53152813
“B2[ 97/ -0.15] 0.550617692] 0.694022416] 0.570228887| 0.092882317] 0.462998527) 101.8576463
"53] 97| -0.15[ 0.559617692] 0.71979739| 0.661440112] -0.048765357 | 0519446855  99.02469287
56| 93/ -0.35] 0.636830651 0.735260276] 0.660442092| -0.232534139| 0.501938413| 95.34931722
58] 88| -0.6| 0.725746882] 0.701389192] 0.625608476| -0.489125181| 0.687623462| 90.21749639
59| 88| -0.6] 0.725746882] 0.686933742| 0.620497789| -0.50166076| 0.692046914) 89.9667848
6088 -0.6] 0.725746882] 0.656507343| 0.543248141| -0.41301169| 0.660200975| 91.73976621
61| 930 -0.35| 0.636830651| 0.728627437| 0.6627156| -0.246554585 0.597373522] 95.0689083
62| 102 0.1] 0.460172163| 0.60610754| 0.545345245| 0.242977269| 0.404011503 104.8595454
_______ 63| o7 0.15] 0.559617692| 0.680025098| 0.60253374| -0.003643765| 0.501453649| 99.9271247
64 97| 015 0559617692 0.709182712 0647485687  -0.04082538| 0.516282447| 99.1834924
65| 92| -0.4| 0.655421742] 0.746809578 0.71585551]  -0.355522] 0.638900717| 92.88955999
661 96/ 02| 0579250700 0.664528037| 0.60542832| -0.090832655  0.536187219| 98.18334689
67| 104| 0.2] 0.420740291] 0.724644707| 0.637454212| _0.3828734| 0350006817 107.657468
70| 87| 0.65] 0.742153880 _0.70000591] 0.656400152| -0.589860491| 0.722357908| 88.20279019
710 88| T-0.6] 0.725746882 0.740144864 0.665260459| -0.496752332( 0.690318143| 90.06495335

Note. MOS = MOS ID Number; JF9CS = Old AA Cut Score (9 JF Level); ZCO = Standardized Old AA
Cut Score; Q0 = Qualification Rate Under Old Cut Score; RO = Validity of 9 JF-Level AA Composite; R1
= Validity of 150 JF Level AA Composite; ZC1 = Standardized New AA Cut Score; Q1 = Qualification

Rate Using New Cut Score; JF150CS = New AA Cut Score (150 JF Level).




Table 2 (cont’d)
New and Old Cut Scores and Qualification Rates by MOS for 150 Job Families

| JF150CS

MOS [JF9CS[ ZCO Qo RO Ri ZC1___ O
72] 88| -0.6] 0.725746882] 0.705386736, 0.640135999| -0.506259999| 0.69366293| 89.87480002
73] 88| -0.6] 0.725746882 0.641538019 0.585418578| -0.511710424| 0.695573155| 89.76579151
74| 87| -0.65 0.742153889] 0.713812452| 0.664743539 -0.583302578| 0.720155186] 88.33394843
75/ 97| -0.15| 0.550617692| 0.764372563| 0.655285599| 0.038037174| 0.484829021| 100.7607435
76 97| -0.15] 0.559617602] 0.792072668| 0.702993657| -0.005745797| 0.502292229| 99.88508405
77| 97| -0.15| 0.559617602| 0.750551996 0.638492143] 0.047897481| 0.480898974| 100.9579496
~ 78| 87| -0.65] 0.742153889] 0.676698726| 0.577052888| -0.497725101| 0.690661093| 90.04549799
" 79] 87| -0.65] 0.742153889| 0.64366095| 0.554044258| -0.506994237| 0.693920569| 89.86011526
81| 97| 0.15| 0.550617692| 0.728881979| 0.62497767| 0.037797144| 0.484924711] 100.7559429
82| 102 0.1] 0.460172163] 0.69485919 0.586903212| 0.333037117| 0.369553133| 106.6607423
83| 87| -0.65| 0.742153889] 0.750439786| 0.705636543| -0.592476656, 0.723234276| 88.15046688
84| 97| -0.15 0.559617692| 0.691086211| 0.601728946| 0.018326624 0.492689144| 100.3665325
85]  102| 0.1] 0.460172163| 0.701452311] 0.631130181  0.242980631, 0.404010201| 104.8596126
86| 97| -0.15] 0.559617692| 0.70697104| 0.61064814| 0.028474678| 0.488641782| 1005694936
T 87| _102| 0.1 0.460172163] 0.717587198| 0.619901888| 0.300551548| 0.381878242| 106.011031
88| 102|  0.1] 0.460172163| 0.627235496] 0.538203859] 0.310244414| 0.378187549| 106.2048883
89| 102  0.1] 0460172163 0.711505261] 0.599025674] 0.33773355| 0.367781995| 106.754671
90| 102| 0.1 0.460172163] 0.672302894| 0.578822271| 0.305399418| 0.380030982| 106.1079884
91] 102| 0.1] 0.460172163] 0.738440547| 0.520344156] 0.612226785| 0.270193861| 112.2445357
92| 102 0.1] 0.460172163] 0.784300107| 0.649859200] 0.361083378| 0.350018559| 107.2216676
93] 102| _0.1] 0.460172163] 0.784078298| 0.674131718 0.307366949| 0.379282041] 106.147339
94 102| 0.1] 0.460172163] 0.71400059 0.650047849] 0.226724563| 0.410318963| 104.5344913
95| 93] -0.35| 0.636830651] 0.721649898] 0.636957623| -0.212721965| 0.584228083| 95.7455607
97| 93| -0.35] 0.636830651| 0.637569126) 0.587380383] -0.260847518| 0.602894951| 94.78304965
99] 107| 0.35] 0.363169349] 0.423410229] 0.356023067| 0.618407143| 0.268153495| 112.3681429
101] 92| -0.4] 0.655421742| 0.698706419| 0.59428135| -0.224598824| 0.58885431| 9550802353
105| 92| -0.4] 0.655421742| 0.65003742] 0.551062966| -0.220864184| 0.5867400907| 95.58271633
706/ 103| 0.15| 0.440382308| 0.664871044] 0.577736298| 0.346638438| 0.364431483| 106.9327688
107| 96| -0.2 0.579250709] 0.668700721| 0.567639178| -0.004122272| 0.501644544| 99.91755457
108] 92| -0.4] 0.655421742| 0.65279443! 0.576894781| -0.267404109| 0.605420982| 94.65191783
12| __103| 0.15] 0.440382308| 0.689781704] 0.585243736| 0.381790438| 0.351308406| 107.6358088
117, 88| -0.6| 0.725746882| 0.686601595  0.686187842  -0.599430793| 0.725557176/ 88.01138415
118] 88| -0.6] 0.725746882| 0.707626076| 0.609817015| -0.454554038| 0.675284946] 90.90891924
119] 85| -0.75| 0.773372648| 0.658118465| 0.529017661| -0.548807564| 0.708431241| 89.02384872
120] 92| -0.4] 0.655421742] 0.666742561| 0.629788933| -0.339867233| 0.633021743| 93.20265535
121] 88| -0.6] 0.725746882, 0.733410493| 0.603876116| -0.407871695| 0.658316063| 91.8425661
vvvvv 122] 85| -0.75] 0.773372648| 0.709052039| 0.662762631 -0.689873342| 0.754863079! 86.20253316
123] 97| -0.15] 0.559617692| 0.650034124| 0.503509664| 0.171302032| 0.431993142| 103.4260406
124] ~7107| 0.35] 0.363169349| 0.723223681| 0.636415672| 0.545018727| 0.292870319| 110.9003745
125| 92| -0.4] 0.655421742| 0.723462278| 0.634518572| -0.258995779| 0.602180751| 94.82008442
126] 92| -0.4] 0.655421742| 0.731579645| 0.588233432] -0.160144163| 0.563616244| 96.79711674
T129] 107| 0.35| 0.363169349] 0.713964828' 0.506940659 0.912092839| 0.180850924| 118.2418568
130] 95| -0.25] 0.598706326| 0.703489738| 0.618740187| -0.101679041| 0.540494281| 07.96641918
131 107| 0.35] 0.363169349] 0.740458173| 0.657309146  0.531148154| 0.297658059| 110.6229631
132|927 -0.4] 0.655421742| 0.661641669] 0.602385987 -0.300117834| 0.617956362] 93.99764332

Note. MOS = MOS ID Number; JFOCS = Old AA Cut Score (9 JF Level); ZCO = Standardized Old AA
Cut Score; Q0 = Qualification Rate Under Old Cut Score; R0 = Validity of 9 JF-Level AA Composite; R1
= Validity of 150 JF Level AA Composite; ZC1 = Standardized New AA Cut Score; Q1 = Qualification
Rate Using New Cut Score; JF150CS = New AA Cut Score (150 JF Level).
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Table 2 (cont’d)

New and Old Cut Scores and Qualification Rates by MOS for 150 Job Families

MOS [JFOCS| ZC0 Q[ RO [ Ri ZC1 Q1 JF150CS_|
—133| 96| -0.2| 0579250700, 0.703450776 0.639431045 -0.088078269] 0.535002766| 98.23843463
134] "102| T0.1] 0.460172163| 0.540006869| 0.467668426| 0.296957005| 0.383249667| 105.939140f
135| 92| 0.4 0.655421742| 0.678738208| 0.591156765| -0.251231385| 0.59918230| 94.9753723
137| 02| -0.4] 0.655421742| 0.723581145 065403854 -0.202231207 | 0.614945073| 94.15537587
T38| 85| 0.75| 0.773372648| 0.697797652| 0.667701054] -0.71093473] 0.761437658| 85.7813054
130~ 88| -0.6] 0.725746882| 0.674647315] 0.603321784| -0.491712326| 0.688538638  90.16575348
140] 88| -0.6] 0.725746882| 0.667530862! 0.532245086| -0.374310745| 0.645013431, 92.5137851
141 92| T70.4] 0.655421742] 0.721646975[ 0.621424046| -0.238510865| 0.504267555| 95.2297827
142) 96| 0.2] 0.579250700| 0.737485532| 0.651422748! -0.05330761| 0.521256592| 98.9338478
23] 93| 1035 0.636830651| 0.721584522| 0.652192158| -0.239506072| 0.594643406| 95.20987857
T1a4] 92| 0.4] 0.655421742| 0.704051744] 0.650429566 -0.315982375] 0.623992057  93.68035251
145| 92| 0.4] 0.655421742, 0.68449826| 0.612574471] -0.281294117| 0.610757589 | 94.37411766
146] 96| -0.2| 0.579250709| 0.696044518| 0.596800715 -0.016621562| 0.506630739| 99.66756876
T147] ~102) T0.1] 0.460172163| 0.633256782] 0.541478552| 0.315267912[ 0.376279123 106.3053562
48] 102| 0.1 0.460172163| 0.63754039! 0.500475826| 0.202886347| 0.419611933| 104.0577269
149] 93| -0.35] 0.636830651| 0.657476775| 0.604700706| -0.258074552| 0.602172562| 94.82050897
150 102|  0.1] 0.460172163| 0.697719236] 0.619541292| 0.261492955| 0.396856191| 105.2298591
15192 -0.4| 0.655421742| 0.713548551| 0.629789208| -0.266005378| 0.604882467| 94.67989243
152] 102 _0.1] 0.460172163| 0.704493117| 0.617336211| 0.280199843| 0.389662094| 105.6039969
1841 " 92| -0.4] 0.655421742] 0.691700773| 0.629281011] -0.299300219] 0.617644506| 94.01399561

Note. MOS = MOS ID Number; JFOCS = Old AA Cut Score (9 JF Level); ZCO = Standardized Old AA
Cut Score; Q0 = Qualification Rate Under Old Cut Score; RO = Validity of 9 JF-Level AA Composite; R1
= Validity of 150 JF Level AA Composite; ZC1 = Standardized New AA Cut Score; Q1 = Qualification

Rate Using New Cut Score; JF150CS = New AA Cut Score (150 JF Level).




